Skip to main content
Log in

Application of linear fracture mechanics for describing the fatigue crack growth rate at higher load levels

  • Scientific-Technical Section
  • Published:
Strength of Materials Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. Procedure Instructions: Determination of the Characteristics of Crack Propagation Resistance in Cyclic Loading [in Russian], Physicomathematical Institute, Academy of Sciences of the Ukrainian SSSR, Lvov (1979).

  2. S. Ya. Yarema, “Examination of fatigue crack growth and kinetic diagrams of fatigue failure,” Fiz. Khim. Mekh. Mater., No. 4, 3–22 (1977).

    Google Scholar 

  3. S. Kotsan'da, Fatigue Failure of Metals [in Russian], Metallurgiya, Moscow (1976).

    Google Scholar 

  4. A. G. Mazepa, E. A. Grin', and T. I. Morozova, “Examination of crack growth kinetics in the conditions of symmetric and pulsating loading,” Probl. Prochn., No. 11 23–27 (1981).

    Google Scholar 

  5. P. G. Cain, R. Planket, and T. E. Hutchinson, “Fatigue crack propagation rates in duralumin in pure beding” Trans. ASME, J. Basic Eng., No. 2, 88–97 (1975).

    Google Scholar 

  6. A. A. Gudkov and V. S. Zoteev, “Effect of the frequency of cyclic loading on the fatigue crack propagation rate,” Probl. Prochn., No. 6, 44–47 (1975).

    Google Scholar 

  7. J. K. Knott, Fundamentals of Fracture Méchanics [Russian translation], Metallurgiya, Moscow (1978).

    Google Scholar 

  8. A. Ya. Krasovskii, Brittleness of Metals at Low Temperature [in Russian], Naukova Dumka, Kiev (1980).

    Google Scholar 

  9. H. Liebowets, G. Aftis, and D. Jones, “Recent theoretical and experimental investigations of fracture mechanics,” Mekh. Razrush., No. 20, 168–202 (1980).

    Google Scholar 

  10. T. S. Kand and H. W. Liu, “Fatigue crack propagation and cyclic deformation at the crack tip,” Int. J. Fract., No. 2, 201–222 (1972).

    Google Scholar 

  11. L. R. Botvina, G. V. Klevtsov, V. M. Markochev, and A. P. Bobrinskii, “Correlation of the size of the cyclic zone of plastic deformation with the rate of fatigue failure of 15Kh2NMFA steel at low temperatures,” Probl. Prochn., No. 7, 27–30 (1982).

    Google Scholar 

  12. S. Usami and S. Shida, “Elastic-plastic analysis of the fatigue limit for a material with small flaws,” Fat. Eng. Mater. Struct.,1, No. 4, 471–81 (1979).

    Google Scholar 

  13. W. Brown and J. Strawley, “Plane strain fracture toughness testing of high-strength metallic materials,” ASTM, Philadelphia.

  14. C. S. Vasil'chenko and P. F. Koshelev, Practical Application of Fracture Mechanics for Evaluating the Strength of Structures [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  15. K. Heckel, Technical Application of Fracture Mechanics [Russian translation], Metallurgiya, Moscow (1974).

    Google Scholar 

  16. L. I. Domozhirov, “Evaluation of the effect of cracklike defects on the cyclic strength of structural members”, Probl. Prochn. No. 7, 27–32 (1981).

    Google Scholar 

Download references

Authors

Additional information

Scientific and Production Section of the Central Scientific-Research Institute of Heavy Engineering, Moscow. Translated from Problemy Prochnosti, No. 4, pp. 10–15, April, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domozhirov, L.I. Application of linear fracture mechanics for describing the fatigue crack growth rate at higher load levels. Strength Mater 18, 426–432 (1986). https://doi.org/10.1007/BF01524060

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01524060

Keywords

Navigation