Skip to main content
Log in

Non-Newtonian fluid flow between rotating cylinders

  • Published:
Rheologica Acta Aims and scope Submit manuscript

Summary

The analysis of the symmetrical and the asymmetrical calender presented here for Newtonian as well as for non-Newtonian fluids leads to the following conclusions:

  1. a)

    Calculating roll-separating forces, it is necessary to account for the non-Newtonian flow behavior of “real” fluids. Neglecting elastic properties of “real” fluids, it can be shown, that the shear-thinning effect is leading to decreasing values of the local pressure and the roll-separating forces respectively.

  2. b)

    The specific power consumption decreases considerably with increasing asymmetry of the calender (increasingµ). If the exit situationβ* and the geometry of the calender are given,e is minimal for the caseε = 1.

Zusammenfassung

Aus der Analyse der Strömung newtonscher und nicht-newtonscher Flüssigkeiten im symmetrischen und im asymmetrischen Walzenspalt ist folgendes zu schließen:

  1. a)

    Bei der Berechnung der Walzentrennkräfte ist eine Berücksichtigung des nicht-newtonschen Fließverhaltens „realer“ Flüssigkeiten erforderlich. Es kann gezeigt werden, daß (bei Vernachlässigung der elastischen Eigenschaften) der Einfluß der Strukturviskosität ein Abnehmen der lokalen Druckwerte bzw. der Walzentrennkraft bedingt.

  2. b)

    Der spezifische Energieumsatz geht bei zunehmender geometrischer Asymmetrie beträchtlich zurück. Bei gegebener Walzengeometrie und konstanter Abgangssituation erreicht der spez. Energieumsatz ein Minimum beiε = 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

half the distance between the poles

a i :

coefficients of eq. [11]

e :

specific power consumption

F :

roll-separating force

g ij :

component of the metric tensor

h :

variable defined by eq. [6]

h*:

h atβ = β*

H :

roll separation at the nip

K :

variable defined by eq. [3], used in eqs. [1] and [2]

p :

pressure

p′ :

pressure gradient —∂p/∂β

Q :

volume flow rate

R 1, R2 :

radii of the rolls

v 1, v2 :

surface velocities of the rolls

v α, vβ :

velocity components into theα undβ-direction respectively

W :

dissipated energy

α, β :

bipolar coordinates

α 1, α2 :

values ofα at the wall of the rolls

β 0 :

entrance coordinate

β*:

exit coordinate

δ :

structural parameter defined by eq. [19]

ε :

surface velocity ratio

η :

non-Newtonian viscosity

η 0 :

zero shear rate viscosity

η :

viscosity at very high shear rates

µ :

radius ratio

v :

dimensionless gap width

τ :

shear stress

τ W1, τW2 :

shear stress at the wall of the rolls

References

  1. Perlberg, S. E. ANTEC8, 14–4 (p. 1–6) (1962).

    Google Scholar 

  2. Takserman-Krozer, R., G. Schenkel, G. Ehrmann Rheol. Acta14, 1066–1076 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 12 figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrmann, G., Takserman-Krozer, R. & Schenkel, G. Non-Newtonian fluid flow between rotating cylinders. Rheol Acta 16, 240–247 (1977). https://doi.org/10.1007/BF01523734

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01523734

Keywords

Navigation