Skip to main content
Log in

An experimental study of the interaction and merging of collinear cracks

  • Scientific-Technical Section
  • Published:
Strength of Materials Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. S. N. Zhurkov and V. S. Kuksenko, “The micromechanics of fracture of polymers,” Mekh. Polimer., No. 5, 792–801 (1974).

    Google Scholar 

  2. A. M. Leksovskii, B. L. Baskin, A. Ya. Gorenberg, et al., “An investigation of the development of microcracks in polymers by the scanning electron microscope methodin situ,” Fiz. Tverd. Tela,25, No. 4, 1096–1102 (1983).

    Google Scholar 

  3. V. V. Panasyuk, M. P. Savruk, and A. P. Datsyshin, The Stress Distribution in Plates and Shells [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  4. L. T. Berezhnitskii, V. V. Panasyuk, and N. G. Stashchuk, The Interaction of Rigid Linear Inclusions and Cracks in a Body Being Deformed [in Russian], Naukova Dumka, Kiev (1983).

    Google Scholar 

  5. D. D. Raftopoulos and B. Farahmand, “A semitheoretical and experimental approach for the determination of the stress intensity factors,” Eng. Fract. Mech.,13, No. 2, 273–284 (1980).

    Google Scholar 

  6. D. D. Raftopoulos and B. Farahmand, “Determination of modes I and II stress intensity factors for oblique single cracks subjected to tension,”Ibid.,,14, No. 4, 763–778 (1981).

    Google Scholar 

  7. B. Farahmand and D. D. Raftopoulos, “A two-dimensional investigation on plates with oblique equal and unequal parallel edge cracks subjected to tension,” Int. J. Fract.,19, No. 3, 203–220 (1982).

    Google Scholar 

  8. D. D. Raftopoulos and B. Farahmand, “An investigation of stress intensity factors for plates with equal and unequal parallel edge cracks,”Ibid.,20, No. 3, 223–239 (1983).

    Google Scholar 

  9. P. Manogg, “Schattenoptische Messung der spezifischen Bruchenergie wahrend des Bruchvorgangs bei Plexiglas,” in: Physics of Noncrystalline Solids, J. A. Prins (ed.), North-Holland, Amsterdam (1965), pp. 481–490.

    Google Scholar 

  10. P. S. Theocaris, “Interaction of crack with other cracks or boundaries,” Int. J. Fract. Mech.,8, No. 1, 37–47 (1972).

    Google Scholar 

  11. S. Nemat-Nasser and H. Horii, “Compression-induced nonplanar crack extension with application to splitting, exfoliation and rockburst,” J. Geophys. Res.,87, No. B8, 6805–6821 (1982).

    Google Scholar 

  12. L. M. Keer, S. Nemat-Nasser, and A. Oranratnachai, “Surface instability and splitting in compressed brittle elastic solids containing crack arrays,” J. Appl. Mech.,49, No. 4, 761–767 (1982).

    Google Scholar 

  13. Y. Murakami and S. Nemat-Nasser, “Growth and stability of interacting surface flaws of arbitrary shape,” Eng. Fract. Mech.,17, No. 3, 193–210 (1983).

    Google Scholar 

  14. J. F. Geyer and S. Nemat-Nasser, “Experimental investigation of thermally induced interacting cracks in brittle solids,” Int. J. Solid Struct., No. 4, 349–356 (1982).

    Google Scholar 

  15. F. F. Lange, “Interaction between overlapping parallel cracks; a photoelastic study,” Int. J. Fract. Mech.,4, No. 3, 287–292 (1968).

    Google Scholar 

  16. A. S. Eremenko, S. A. Novikov, and A. P. Pogorelov, “An investigation of the propagation and interaction of rapidly growing cracks in transparent plastic,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 109–112 (1979).

    Google Scholar 

  17. V. I. Aleshin, N. A. Dolotova, and M. I. Bessonov, “A method of measurement of the stress intensity factor KI under conditions of quasibrittle fracture on models of transparent plastic,” Zavod. Lab.,50, No. 2 67–71 (1984).

    Google Scholar 

  18. V. A. Lobasenok, V. I. Aleshin, and E. V. Kuvshinskii, “A study of the fracture of amorphous solids under conditons of steady crack growth,” Fiz. Tverd. Tela,15, No. 1, 133–141 (1973).

    Google Scholar 

  19. G. P. Marshall, L. H. Coutts, and J. G. Williams, “Temperature effects in the fracture of PMMA,” J. Mater. Sci.,9, No. 9, 1409–1419 (1974).

    Google Scholar 

  20. V. I. Aleshin and E. V. Kuvshinskii, “The material relationships controlling slow crack growth in glasslike polymethyl methacrylate,” Fiz. Tverd. Tela,17, No. 3, 669–678 (1975).

    Google Scholar 

  21. V. I. Aleshin, É. L. Aéro, E. V. Kuvshinskii, and I. A. Slavitskii, “The kinetics of crack growth in transparent plastic,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2, 70–79 (1981).

    Google Scholar 

  22. G. P. Marshall, L. E. Culver, and J. G. Williams, “Fracture phenomena in polystyrene,” Int. J. Fract.,9, No. 3, 295–309 (1973).

    Google Scholar 

  23. J. S. Radon, “Stress biaxiality effects on slow crack growth in polymethyl methacrylate,” in: Advances in Fracture Research, Vol. 2, 1109–1125 (1981).

  24. P. S. Leevers and J. C. Radon, “Inherent stress biaxiality in various fracture specimen geometries,” Int. J. Fract.,19, No. 4, 311–325 (1982).

    Google Scholar 

  25. T. Kobayashi and D. Dally, “The relationship between crack velocity and stress intensity factor in polymers with double refraction,” in: News in Foreign Science. Fracture Mechanics. Rapid Fracture and Crack Arrest [Russian translation], Mir, Moscow (1981), pp. 101–119.

    Google Scholar 

  26. G. S. Pisarenko, V. P. Naumenko, and N. I. Nedelchev, “The characteristic of crack resistance of a brittle material. What is it?,” Probl. Prochn., No. 11, 17–21 (1985).

    Google Scholar 

  27. S. A. Nazarov and Yu. A. Romashev, “The change in stress intensity factor in fracture of the crosspiece between two collinear cracks,” Izv. Akad. Nauk ArmSSR, Mekh.,35, No. 4, 30–40 (1982).

    Google Scholar 

  28. V. M. Finkel', The Physics of Fracture [in Russian], Metallurgiya, Moscow (1970).

    Google Scholar 

  29. N. A. Dolotova, Yu. A. Romashev, V. I. Aleshin, and M. I. Bessonov, The Merging of Cracks in Plates of Finite Dimensions [in Russian], Deposited in the All-Union Institute for Scientific and Technical Information, No. 1750-V-86 Dep.

  30. S. Melin, “Why do cracks avoid each other?,” Int. J. Fract.,23, No. 1, 37–45 (1983).

    Google Scholar 

  31. V. A. Zeiliger, “A program for solution of the plane problem of the theory of elasticity for bodies with cracks,” Izv. Vse. Nauch.-Issled. Inst. Gidrotekh.,156, 13–17 (1982).

    Google Scholar 

  32. P. Paris and J. Sih, “An analysis of the stressed condition near cracks,” in: Applied Questions of Fracture Toughness [Russian translation], Mir, Moscow (1968), pp. 64–142.

    Google Scholar 

Download references

Authors

Additional information

Institute of High Molecular Compounds, Academy of Sciences of the USSR, Leningrad. Translated from Problemy Prochnosti, No. 7, pp. 16–23, July, 1987.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolotova, N.A., Aleshin, V.I., Zeiliger, V.A. et al. An experimental study of the interaction and merging of collinear cracks. Strength Mater 19, 886–896 (1987). https://doi.org/10.1007/BF01523524

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01523524

Keywords

Navigation