Skip to main content
Log in

An analysis of flow induced formation of long fibers

  • Published:
Rheologica Acta Aims and scope Submit manuscript

Summary

An engineering model of fiber growth from a flowing solution is presented. Attention is focussed on three main issues: the fluid mechanics, the molecular structure of the fluid, coupled with the thermodynamics, and the crystal growth itself. Although because of existing uncertainties order of magnitude analyses had to be adopted it was possible to obtain quantitative predictions about the growth process.

Zusammenfassung

Es wird ein einfaches Modell des Faserwachstums aus einer strömenden Lösung vorgestellt. Dabei werden vor allem drei wesentliche Aspekte betrachtet: die Strömungsmechanik, die molekulare Struktur und Thermodynamik der Flüssigkeit, sowie das Kristallwachstum selbst. Obgleich wegen der noch bestehenden Unsicherheiten nur größenordnungsmäßige Abschätzungen in Ansatz gebracht werden konnten, war es dennoch möglich, quantitative Aussagen über den Wachstumsvorgang zu erhalten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

surface layer thickness

C :

constant

c :

concentration

d :

rate of strain tensor

F :

free energy

F K :

kink energy

F V :

free energy far from the fiber

G :

growth rate constant

H :

enthalpy

K :

ratio between tube diameter and fiber diameter

L :

filament length

l :

length of the critical nucleus

Q :

flow rate

R :

fiber diameter

R * :

gas constant

r :

radial coordinate

S :

entropy

S f :

internal entropy in the fluid phase

S s :

internal entropy in the solid phase

T :

temperature

T m,d :

melting or dissolution temperature

T d :

dissolution temperature

t :

time

u :

axial fluid velocity

V :

difference between draw velocity and maximal fluid velocity

V D :

draw velocity

V F :

maximal fluid velocity without fiber

V G :

fiber grow velocity

v :

velocity vector

Z u :

length of the “entrance length” upstream of the fiber tip

z :

axial coordinate

α :

constant, depending on the nucleation model

Γ :

total stretch

γ :

activity coefficient

\(\dot \Gamma \) :

shear rate or stretch rate

δ :

boundary layer thickness

ζ :

characteristic length

η :

viscosity

η el :

elongational viscosity

η sh :

shear viscosity

θ :

relative temperature difference

Λ :

time constant

µ :

driving force

ρ :

density

σ′ :

tensile strength of the fiber

σ :

lateral surface free energy

σ e :

fold surface free energy

τ :

excess stress tensor co-ordinated to the polymer molecules

χ :

lattice restriction constant

References

  1. Symposium on Stress-Induced Crystallization, Polym. Eng. Sci.16 (1976).

  2. Pennings, A. J., Symposium on Macromolecular Chemistry, preprint 216 (Prague 1965); J. Polym. Sci. Part. C,16, 1799 (1967).

    Google Scholar 

  3. Pennings, A. J., A. M. Kiel, Kolloid. Z. u. Z. Polymere205, 160 (1965).

    Google Scholar 

  4. Pennings, A. J., Crystal Growth, Proc. Int. Conf. on Crystal Growth, pp. 389–393, Boston (Oxford 1966).

  5. McHugh, A. J., E. H. Forrest, J. Macromol. Sci.-Phys.B 11, 219 (1975).

    Google Scholar 

  6. McHugh, A. J., J. of Appl. Pol. Sci.19, 125 (1975).

    Google Scholar 

  7. McHugh, A. J., C. Silebi, Pol. Eng. Sci.16, 158 (1976).

    Google Scholar 

  8. Zwijnenburg, A., A. J. Pennings, Coll. Polym. Sci.253, 452 (1975).

    Google Scholar 

  9. Zwijnenburg, A., A. J. Pennings, Coll. Polym. Sci.254, 868 (1976).

    Google Scholar 

  10. McHugh, A. J., P. Vaughn, E. Ejike, Pol. Eng. Sci.18, 443 (1978).

    Google Scholar 

  11. Hill, J. L., Statistical Mechanics, McGraw-Hill (New York 1956).

    Google Scholar 

  12. van der Eerden, J. P., P. Bennema, T. A. Cherapanova, Progress in Crystal Growth and Assessment, no. 3, Pergamon Press (Oxford 1977).

    Google Scholar 

  13. Astarita, G., Pol. Eng. Sci.14, 730 (1974).

    Google Scholar 

  14. Astarita, G., G. C. Sarti, J. Non-Newtonian Fluid Mech.1, 39 (1976).

    Google Scholar 

  15. Glasstone, S., K. J. Laidler, H. Eyring, The Theory of Rate Processes (New York 1941).

  16. Janssen-van Rosmalen, R., P. Bennema, J. Garside, J. of Crystal Growth29, 342 (1975).

    Google Scholar 

  17. Hoffman, J. D., G. T. Davis, J. I. Lauritzer, J., Treatise Solid State Chem.3, 497–614 (1976).

    Google Scholar 

  18. Astarita, G., G. Marucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill (Maidenhead 1974).

    Google Scholar 

  19. Peterlin, A., Pol. Eng. Sci.16, 126 (1976).

    Google Scholar 

  20. Astarita, G., G. C. Sarti, J. Non-Newtonian Fluid Mech.3, 77 (1977).

    Google Scholar 

  21. Marrucci, G., Trans. Soc. Rheol.16, 321 (1972).

    Google Scholar 

  22. Mackley, M. R., Colloid & Polym. Sci.253, 373 (1975).

    Google Scholar 

  23. Mackley, M. R., A. Keller, Phil. Trans. Roy. Soc. (Lond.)278 (1276), 29 (1975).

    Google Scholar 

  24. Mackley, M. R., F. C. Frank, A. Keller, J. of Mat. Sci.10, 1501 (1975).

    Google Scholar 

  25. Denn, M. M., The Mechanics of Viscoelastic Fluids, AMD-vol. 22, ASME (New York 1977).

    Google Scholar 

  26. Schlichting, H., Boundary layer theory, p. 222, McGraw-Hill (New York 1968).

    Google Scholar 

  27. McHugh, A. J., private communications.

  28. Elyashevich, G. K., V. G. Baranov, S. Ya. Frenkel, J. Macromol. Sci. Phys.B 13 (2), 255 (1977).

    Google Scholar 

  29. Zwijnenburg, A., A. J. Pennings, Polym. Letters Ed.14, 339 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from the Laboratory for Physical Technology Delft University of Technology, Delft (The Netherlands).

On leave from the RIM Laboratory for Solid State Physics, Catholic University Nijmegen (The Netherlands).

With 6 figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janssen, L.P.B.M., Janssen-van Rosmalen, R. An analysis of flow induced formation of long fibers. Rheol Acta 17, 578–588 (1978). https://doi.org/10.1007/BF01522030

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01522030

Keywords

Navigation