Skip to main content

Advertisement

Log in

Linear epitopes of the replication-activator protein of Epstein-Barr virus recognised by specific serum IgG in nasopharyngeal carcinoma

  • Original Article
  • Epstein-Barr Virus, Nasopharyngeal Carcinoma, Linear Epitopes, Replication Activator Protein
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The linear antigenic epitopes of the Epstein-Barr virus replication activator protein (ZEBRA), recognised by specific serum IgG in nasopharyngeal carcinoma (NPC), were determined. This was achieved by synthesizing the entire amino acid sequence of ZEBRA as a set of 29, 22-residue peptides with an overlap of 14 amino acids. The ZEBRA peptides were tested in enzyme-linked immunosorbent assay (ELISA) for IgG binding in sera from 37 selected NPC patients who had IgG antibodies to the native ZEBRA protein. The most immunogenic epitope was peptide 1 at the amino-terminal end with 36 of the sera reactive against it. Further analysis of peptide 1, using the multipin peptide-scanning technique, defined a 10-amino-acid sequence FTPDPYQVPF, which was strongly bound by IgG. Two other regions of ZEBRA were also identified as immunodominant IgG epitopes, namely peptide 11 (amino acids 82–103) and peptide 19/20 (amino acids 146–175) with 8–13 of the NPC sera reactive against the peptides. The number of peptides reactive with individual NPC serum varies from 1 to 6 or more and there is some correlation between a greater number of peptide (at least 4) bound and a higher (at least 1:40) titre of serum IgA to viral capsid antigen. The immunodominant ZEBRA peptide 1 could be utilised in IgG ELISA for the detection of NPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apolloni A, Moss D, Stumm R, Burrows S, Suhrbier A, Misko I, Schmidt C, Sculley T (1992) Sequence variation of cytotoxic T cell epitopes in different isolates of Epstein-Barr virus. Eur J Immunol 22:183

    PubMed  Google Scholar 

  2. Bastin J, Rothbard J, Davey J, Jones I, Townsend A (1987) Use of synthetic peptides of influenza nucleoprotein to define epitopes recognised by class 1-restricted cytotoxic T lymphocytes. J Exp Med 165:1508

    PubMed  Google Scholar 

  3. Brooks L, Yao QY, Rickinson AB, Young LS (1992) Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNA 1, LMP 1, and LMP 2 transcripts. J Virol 66:2689

    PubMed  Google Scholar 

  4. Burt RD, Vaughan TC, Nisperos B, Swanson M, Berwick M (1994) Protective association between HLA-A2 antigen and nasopharyngeal carcinoma in US Caucasians. Int J Cancer 56:465

    PubMed  Google Scholar 

  5. Chang YN, Dong DL, Hayward GS, Hayward SD (1990) The Epstein-Barr virus Zta transactivator: a member of the bZIP family with unique DNA-binding specificity and a dimerization domain that lacks the characteristic heptad leucine zipper motif. J Virol 64:3358

    PubMed  Google Scholar 

  6. Chen Y, Chan SH (1994) Polymorphism of T cell receptor genes in nasopharyngeal carcinoma. Int J Cancer 56:830

    PubMed  Google Scholar 

  7. Cheng HM, Foong YT, Sam CK, Prasad U, Dillner J (1991) Epstein-Barr virus nuclear antigen 1 linear epitopes that are reactive with immunoglobulin A (IgA) or IgG in sera from nasopharyngeal carcinoma patients or from healthy donors. J Clin Microbiol 29:2180

    PubMed  Google Scholar 

  8. Cochet C, Martel-Renoir D, Grunewald V, Bosq J, Cochet G, Schwaab G, Bernaudin J-F, Joab I (1993) Expression of the Epstein-Barr virus immediate-early gene, BZLF1, in nasopharyngeal carcinoma tumor cells. Virology 197:358

    PubMed  Google Scholar 

  9. De-Vathaire F, Sancho-Garnier H, The Hde, Pieddeloup C, Schwaab G, Ho JHC, Ellouz R, Micheau C, Cammoun M, Cachin Y, The Gde (1988) Prognostic value of EBV markers in the clinical management of nasopharyngeal carcinoma-a multicenter follow-up study. Int J Cancer 42:176

    PubMed  Google Scholar 

  10. Dillner J, Szigeti R, Henle W, Henle G, Lerner RA, Klein G (1987) Cellular and humoral immune responses to synthetic peptides deduced from the amino-acid sequences of Epstein-Barr virus-encoded proteins in EBV-transformed cells. Int J Cancer 40:455

    PubMed  Google Scholar 

  11. Dillner J, Dillner L, Robb J, Willems J, Jones I, Lancaster W, Smith R, Lerner R (1989) A synthetic peptide defines a serologic IgA response to a human papillomavirus-encoded nuclear antigen expressed in virus-carrying cervical neoplasia. Proc Natl Acad Sci USA 86:3838

    PubMed  Google Scholar 

  12. Ferradini L, Miescher S, Stoeck M, Busson P, Barras C, Cerf-Bensussan N, Lipinski M, von Fliedner V, Tursz T (1991) Cytotoxic potential despite impaired activation pathways in T lymphocytes infiltrating nasopharyngeal carcinoma. Int J Cancer 47:362

    PubMed  Google Scholar 

  13. Foong YT, Cheng HM, Sam CK, Dillner J Hinderer W, Prasad U (1990) Serum and salivary IgA antibodies against a defined epitope of the Epstein-Barr virus nuclear antigen (EBNA) are elevated in nasopharyngeal carcinoma. Int J Cancer 45:1061

    PubMed  Google Scholar 

  14. Geysen HM, Rodda SJ, Mason TJ, Tribbick G, Schoofs PG (1987) Strategies for epitope analysis using peptide synthesis. J Immunol Methods 102:259

    PubMed  Google Scholar 

  15. Hildesheim A, Levine PH (1993) Etiology of nasopharyngeal carcinoma — a review. Epidemiol Rev 15:466

    PubMed  Google Scholar 

  16. Houghten RA (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigenantibody interaction at the level of individual amino-acids. Proc Natl Acad Sci USA 82:5131

    PubMed  Google Scholar 

  17. Houghten RA, Bray MK, Degraw ST, Kirby CJ (1986) Simple procedure for carrying out simultaneous multiple hydrogen fluoride cleavages of protected peptide resins. Int J Peptide Protein Res 27:675

    Google Scholar 

  18. Joab I, Nicolas JC, Schwaab G, The Gde, Clausse B, Perricaudet M, Zeng Y (1991) Detection of anti-Epstein-Barr virus transactivator (ZEBRA) antibodies in sera from patients with nasopharyngeal carcinoma. Int J Cancer 48:647

    PubMed  Google Scholar 

  19. Kenney S, Kamine J, Holley-Guthrie E, Lin JC, Mar EC, Pagano J (1989) The Epstein-Barr virus (EBV) BZLF1 immediate-early gene product differentially affects latent versus productive EBV promoters. J Virol 63:1729

    PubMed  Google Scholar 

  20. Lee SP, Thomas WA, Murray RJ, Khanim F, Kaur S, Young LS, Rowe M, Kurilla M, Rickinson AB (1993) HLA A2.1-restricted cytotoxic T cells recognizing a range of Epstein-Barr virus isolates through a defined epitope in latent membrane protein LMP2. J Virol 67:7428

    PubMed  Google Scholar 

  21. Lu SJ, Day NE, Degos L, Lepage V, Wang PC, Chan SH, Simons M, McKnight B, Easton D, Zeng Y, The Gde (1990) Linkage of nasopharyngeal carcinoma susceptibility locus to HLA region. Nature 346:470

    PubMed  Google Scholar 

  22. Luka J, Deeb ZE, Hartmann DP (1988) Detection of antigens associated with Epstein-Barr virus replication in extracts from biopsy specimens of nasopharyngeal carcinomas. J Natl Cancer Inst 80:1164

    PubMed  Google Scholar 

  23. Manet E, Gruffat H, Trescol-Biemont MC, Moreno N, Chambard P, Giot JF, Sergeant A (1989) Epstein-Barr virus bicistronic mRNAs generated by facultative splicing code for two transcriptional trans-activators. EMBO J 8:1819

    PubMed  Google Scholar 

  24. Mathew A, Cheng HM, Sam CK, Joab I, Prasad U (1994) A high incidence of serum IgG antibodies to the Epstein-Barr virus replication activator protein in nasopharyngeal carcinoma. Cancer Immunol Immunother 38:68

    PubMed  Google Scholar 

  25. Middeldorp JM, Meloen RH (1988) Epitope mapping on the Epstein-Barr virus major capsid protein using systematic synthesis of overlapping oligopeptides. J Virol Methods 21:147

    PubMed  Google Scholar 

  26. Miller G (1989) The switch between EBV latency and replication. Yale J Biol Med 62:205

    PubMed  Google Scholar 

  27. Miller G, Mimmelfarb H, Heston L, Countryman J, Gradoville L, Baumann R, Chi T, Carey M (1993) Comparing regions of the Epstein-Barr virus ZEBRA protein which function as transcriptional activating sequences inSaccharomyces cerevisiae and in B cells. J Virol 67:7472

    PubMed  Google Scholar 

  28. Moriarty AM, Alexander H, Lerner RA, Thornton RB (1985) Antibodies to peptides detect new hepatitis B antigen: serological correlation with hepatocellular carcinoma. Science 227:427

    PubMed  Google Scholar 

  29. Norrby E, Mufson MA, Alexander H, Houghten RA, Lerner RA (1987) Site-directed serology with synthetic peptides representing the large glycoprotein G of respiratory syncytial virus. Proc Natl Acad Sci USA 84:6572

    PubMed  Google Scholar 

  30. Novotny J, Handschumacher M, Bruccoleri RE (1987) Protein antigenicity — a static surface property. Immunol Today 8:26

    Google Scholar 

  31. Oshima M, Atassi Z (1989) Comparison of peptide-coating conditions in solid phase plate assays for detection of antipeptide antibodies. Immunol Invest 18:841

    PubMed  Google Scholar 

  32. Packham G, Economu A, Rooney CM, Rowe DT, Farrell PJ (1990) Structure and function of the Epstein-Barr virus BZLF1 protein. J Virol 64:2110

    PubMed  Google Scholar 

  33. Prasad U, Rampal L (1992) Descriptive epidemiology of nasopharyngeal carcinoma in Peninsular Malaysia. Cancer Causes Controls 3:179

    Google Scholar 

  34. Raab-Traub N, Flynn K (1986) The structure of the termini of Epstein-Barr virus as a marker of clonal cellular proliferation. Cell 47:883

    PubMed  Google Scholar 

  35. Saint-Clair AJ, Brimmell M, Farrell PJ (1992) Reciprocal antagonism of steroid hormones and BZLF1 in switch between Epstein-Barr virus latent and productive cycle gene expression. J Virol 66:70

    PubMed  Google Scholar 

  36. Sam CK, Prasad U, Pathmanathan R (1989) Serological marker in the diagnosis of histopathological types of nasopharyngeal carcinoma. Eur J Sur Oncol 15:357

    Google Scholar 

  37. Smith RS, Naso RB, Rosen J, Whalley A, Hom YL, Hoey K, Kennedy CJ, McCutchan JA, Spector S, Richman DD (1987) Antibody to a synthetic oligopeptide in subjects at risk for the immunodeficiency virus infection. J Clin Microbiol 25:1498

    PubMed  Google Scholar 

  38. Takada K, Ono Y (1989) Synchronous and sequential activation of latently infected Epstein-Barr virus genomes. J Virol 63:445

    PubMed  Google Scholar 

  39. Tam JP, Heath WF, Merrifield RB (1983) Sn2 deprotection of synthetic peptides with a low concentration of HF in dimethyl sulfide: evidence and application in peptide synthesis. J Am Chem Soc 105:6442

    Google Scholar 

  40. Trumper PA, Epstein MA, Giovanella BC, Finerty S (1977) Isolation of infectious EB virus from the epithelial tumour cells of nasopharyngeal carcinoma. Int J Cancer 20:655

    PubMed  Google Scholar 

  41. Urier G, Buisson M, Chambard P, Sergeant A (1989) The Epstein-Barr virus early protein EB1 activates transcription from different responsive elements including AP-1 binding sites. EMBO J 8:1447

    PubMed  Google Scholar 

  42. Van Regenmortel MHV (1986) Which structural features determine protein antigenicity? Trends Biochem Sci 11:36

    Google Scholar 

  43. Van Regenmortel MYV (1987) Antigenic cross-reactivity between proteins and peptides — new insights and applications. Trends Biochem Sci 12:237

    Google Scholar 

  44. Yu MC, Garabrant DH, Huang T-B, Henderson BE (1990) Occupational and other non-dietary risk factors for nasopharyngeal carcinoma in Guangzhou, China. Int J Cancer 45:1033

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, HM., Foong, YT., AbuSamah, A.J. et al. Linear epitopes of the replication-activator protein of Epstein-Barr virus recognised by specific serum IgG in nasopharyngeal carcinoma. Cancer Immunol Immunother 40, 251–256 (1995). https://doi.org/10.1007/BF01519899

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01519899

Key words

Navigation