Skip to main content
Log in

An antimelanoma immunotoxin containing recombinant human tumor necrosis factor: tissue disposition, pharmacokinetic, and therapeutic studies in xenograft models

  • Original Article
  • TNF, Immunotoxins, Melanoma, Pharmacokinetics, Xenograft Models
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The ability of monoclonal antibody conjugates to re-direct plant or bacterial toxins, chemotherapeutic agents and radionuclides to selected target cells has been well-documented. Recombinant human tumor necrosis factor (TNF) is a macrophage-derived, non-glycosylated (17 kDa) peptide with a broad range of biological and immunological effects including antiviral activity, cytotoxic and cytostatic effects. A conjugate of the antimelanoma antibody ZME-018 and TNF in previous studies has shown melanoma-selective cytotoxic effects in vitro. Pharmacokinetic studies of the ZME-TNF immunotoxin showed that the agent cleared from plasma biphasically with α-and β-phase half-lives similar to that of ZME itself (72 min and 36 h compared to 84 min and 41 h respectively). In contrast, TNF itself was cleared rapidly from plasma with a terminalphase half-life of only 2.7 h. The clearance rate of ZME-TNF from plasma (Clp) was almost tenfold more rapid than for ZME (1.1 versus 0.16 ml/kg x min) but was threefold slower than the clearance for TNF itself (3.4 ml/kg x min). Tissue distribution studies in nude mice bearing human melanoma xenografts showed similar tumor localization of the immunotoxin compared to the free antibody and slightly higher concentrations in liver and kidney compared to ZME itself. Treatment of nude mice bearing well-developed A375 tumors with the immunotoxin resulted in a statistically significant (P<0.002) suppression in tumor growth rate (fivefold increase) compared to saline-treated controls, which increased 20-fold over the same period. These studies demonstrate the feasibility of this approach and suggest that TNF may represent a non-antigenic alternative to immunotoxins containing plant and bacterial toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldenberg DM, Kim EE, Deland F, VanNagell JR Jr, Javadpour N (1980) Clinical radioimmunodetection of cancer with radioactive antibodies to human chronic gonadotropin. Sciece 208: 1284

    Google Scholar 

  2. Goldenberg DM, Kim EE, Deland F, Spremulli E, Nelson MO, Gockerman JP, Primus FJ, Corgan RL, Alpert E (1990) Clinical studies on radioimmunodetection of tumors containing alpha-feto protein. Cancer 45: 2500

    Google Scholar 

  3. Mack JP, Carrel S, Forni M, Ritschard J, Donath A, Alberto P (1980) Tumor localization of radiolabeled antibodies against carcinoembryonic antigen in patients with carcinoma. N Engl J Med 305: 5

    Google Scholar 

  4. Marks A, Ettenson D, Bjorn MJ, Lei M, Baumal R (1990) Inhibition of human tumor growth by intraperitoneal immunotoxins in nude mice. Cancer Res 50: 288

    PubMed  Google Scholar 

  5. Pastan I, Willingham MC, Fitzgerald DJF (1986) Immunotoxins. Cell 47: 641

    PubMed  Google Scholar 

  6. Press OW, Martin PJ, Thorpe PE, Vitetta ES (1988) Ricin A-chain containing immunotoxins directed against different epitopes on the CD2 molecule differ in their ability to kill normal and malignant T cells. J Immunol 141: 4410

    PubMed  Google Scholar 

  7. Priker R, Fitzgerald DJP, Hamilton TC, Ozols RF, Laird W, Frankel AE, Willingham MC, Pastan I (1985) Characterization of immunotoxins directed against ovarian cancer cell lines. J Clin Invest 76: 1261

    PubMed  Google Scholar 

  8. Rosenblum MG, Murray JL, Cheung L, Rifkin R, Salmon S, Bartholomew R (1991) A specific and potent immunotoxicomposed of antibody ZME-018 and the plant toxin gelonin. Mol Biother 3: 6

    PubMed  Google Scholar 

  9. Mujoo K, Reisfeld RA, Cheung L, Rosenblum MG (1991) A potent and specific immunotoxin for tumor cells expressing disialoganglioside GD2. Cancer Immunol Immunother 34: 198

    PubMed  Google Scholar 

  10. Trail PA, Willner D, Lasch SJ, Henderson AJ, Hofstead S, Casazza AM, Firestone RA, Hellstrom I, Hellstrom KE (1993) Cure of xenografted human carcinomas by BR96-doxorubicin. Science 261: 212

    PubMed  Google Scholar 

  11. Rosenblum MG, Zuckerman JE, Marks W, Rotbein J, Allen W. Ross (1992) A gelonin-containing immunotoxin directed against human breast carcinoma. Mol Biother 4: 122

    PubMed  Google Scholar 

  12. Pelham JM, Gray JB, Flannery GR, Pimm MV, Baldwin RW (1983) Interferon-alpha conjugation to human osteogenic sarcoma monoclonal antibody 791T/36. Cancer Immunol Immunother 15: 210

    PubMed  Google Scholar 

  13. Alkan SS, Miescher-Granger S, Braun DG, Hochkeppel HK (1984) Antiviral and antiproliferative effects of interferon delivered via monoclonal antibodies. J Interferon Res 4: 355

    PubMed  Google Scholar 

  14. Ozzello L, DeRosa CM, Blank EW, Cantell K, Ceriani RL, Habif DV Sr (1993) The use of natural interferon alpha conjugated to a monoclonal antibody anti mammary epithelial mucin (Mc5) for the treatment of human breast cancer xenografts (1993) Breast Cancer Res Treat 25: 265

    PubMed  Google Scholar 

  15. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72: 366

    Google Scholar 

  16. Aggarwal BB, Kohr WJ, Hass PE, Moffat B, Spencer SA, Henzel WJ, Bringman TS, Nedwin GE, Goeddel DV, Harkins RN (1985) Human necrosis factor production, purification and characterization. J Biol Chem 260: 2345

    PubMed  Google Scholar 

  17. Tsujimoto M, Yip YK, Vilceck J (1985) Tumor necrosis factor, specific binding and internalization in sensitive and resistant cells. Proc Natl Acad Sci USA 82: 7226

    Google Scholar 

  18. Sugarman BJ, Aggarwal BB, Hass PE, Figarci IS, Palladino MA, Shepard HM (1985) Recombinant tumor necrosis factor-α: effect on proliferation of normal and transformed cells in vitro. Science 230: 943

    PubMed  Google Scholar 

  19. Nitsu Y, Watanabe N, Sone H, Neda H, Yamauchi N, Urushizaki I (1985) Mechanisms of the cytotoxic effect of tumor necrosis factor. Jpn J Cancer Res 76: 1193

    PubMed  Google Scholar 

  20. Block M, Sherwin SA, Rosenblum MG, Gutterman J (1987) Phase I study of recombinant tumor necrosis factor in cancer patients. Cancer Res 47: 2986

    PubMed  Google Scholar 

  21. Kus B, Sersa G, Novakovic S, Urbancic J, Stalc A (1993) Modification of TNF-alpha pharmacokinetics in SA-1 tumorbearing mice. Int J Cancer 55: 110

    PubMed  Google Scholar 

  22. Wilson BS, Imai K, Natali PG, Ferrone S (1981) Distribution and molecular characterization of cell surface and cytoplasmic antigen detectable in human melanoma cells with monoclonal antibodies. Int J Cancer 28: 293

    PubMed  Google Scholar 

  23. Murray JL, Rosenblum MG, Lamki L, Haynie TP, Glen HJ, Jahns M, Plager C, Hersh EM, Unger MW, Carlo DJ (1987) Radioimmunodetection in malignant melanoma patients using a high molecular weight antigen kd 240. NCI Monogr 3: 3

    PubMed  Google Scholar 

  24. Rosenblum MG, Cheung L, Murray JL, Bartholomew R (1991) Antibody-mediated delivery of tumor necrosis factor (TNF-α): improvement of cytotoxicity and reduction of cellular resistance. Cancer Commun 3: 21

    PubMed  Google Scholar 

  25. Wilbur DS, Hadley SW, Hylarides MD, Abrams PG, Beumier PA, Morgan AC, Reno JM, Fritzberg AR (1989) Development of a stable radioiodinating reagent to label monoclonal antibodies for radiotherapy of cancer. J Nucl Med 30: 216

    PubMed  Google Scholar 

  26. Lindmo T, Boven E, Cullta F, Fedroko J, Bunn PAJ (1984) Determination of immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods 72: 77

    PubMed  Google Scholar 

  27. Byers VS, Baldwin RW (1991) Rationale for clinical use of immunotoxins in cancer and autoimmune disease. Semin Cell Biol 2: 59

    PubMed  Google Scholar 

  28. Cannon JB, Hui HW (1990) Immunoconjugates in drug delivery systems. Targeted Diagn Ther 3: 121

    PubMed  Google Scholar 

  29. Lambert JM, Blattler WA, McIntyre GD, Goldmacher VS, Scott CF Jr. (1988) Immunotoxins containing single-chain ribosomeinactivating proteins. Cancer Treat Res 37: 175

    PubMed  Google Scholar 

  30. Baldwin RW, Byers VS (1987) Monoclonal antibodies and immunoconjugates for cancer treatment. Cancer Chemother Biol Response Modif 9: 409

    PubMed  Google Scholar 

  31. Mihara M, Koishihara Y, Fukui H, Yasukawa K, Ohsugi Y (1991) Murine anti-human IL-6 monoclonal antibody prolongs the halflife in circulating blood and thus prolongs the bioactivity of human IL-6 in mice. Immunology 74: 55

    PubMed  Google Scholar 

  32. Baglioni C, McCandless S, Tavernier J, Fiers W (1985) Binding of human tumor necrosis factor to high affinity receptors on HeLa and lymphoblastoid cells sensitive to growth inhibition. J Biol Chem 260: 13, 395

    Google Scholar 

  33. Rosenblum MG, Donato NJ, Gutterman JU (1985) Characterization of human recombinant tumor necrosis factor-alpha antiproliferative effects on human cells in culture. Lymphokine Res 7: 107

    Google Scholar 

  34. Mujoo K, Donato NJ, Lapushin R, Rosenblum MG, Murray JL (1993) Tumor necrosis factor alpha and gamma-interferon enhancement of anti-epidermal growth factor receptor monoclonal antibody binding to human melanoma cells. J Immunother 13: 166

    PubMed  Google Scholar 

  35. Van de Wiel PA, Bloksma N, Kuper CF, Hofhuis FM, Willers JM (1989) Macroscopic and microscopic early effects of tumour necrosis factor on murine Meth A sarcoma, and relation to curative activity. J Pathol 157: 65

    PubMed  Google Scholar 

  36. Nunokawa Y, Tanaka S (1992) Interferon-gamma inhibits proliferation of rat vascular smooth muscle cells by nitric oxide generation. Biochem Biophys Res Commun 188: 409

    PubMed  Google Scholar 

  37. Guadagni F, Schlom J, Greiner JW (1991) In vitro and in vivo regulation of tumor antigen expression by human recombinant interferons. Int J Rad Appl Instrum [B] 18: 409

    Google Scholar 

  38. Rosenblum MG, Lamki LM, Murray JL, Carlo DJ, Gutterman JU (1988) Interferon-induced changes in the pharmacokinetics and tumor uptake of [111In] labeled antimelanoma antibody 96.5 in melanoma patients. J Natl Cancer Inst 80: 160

    PubMed  Google Scholar 

  39. Gillies SD, Young D, Lo KM, Foley SF, Reisfeld RA (1991) Expression of genetically engineered immunoconjugates of lymphotoxin and a chimeric anti-ganglioside GD2 antibody. Hybridoma 10: 347

    PubMed  Google Scholar 

  40. Hoogenboom HR, Volckaert G, Raus JC (1991) Construction and expression of antibody-tumor necrosis factor action fusion proteins. Mol Immunol 28: 1027

    PubMed  Google Scholar 

  41. Gillies SD, Young D, Lo KM, Roberts S (1993) Biological activity and in vivo clearance of antitumor antibody/cytokine fusion proteins. Bioconjug Chem 4: 230

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research conducted, in part, by the Clayton Foundation for Research

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenblum, M.G., Cheung, L., Mujoo, K. et al. An antimelanoma immunotoxin containing recombinant human tumor necrosis factor: tissue disposition, pharmacokinetic, and therapeutic studies in xenograft models. Cancer Immunol Immunother 40, 322–328 (1995). https://doi.org/10.1007/BF01519633

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01519633

Key words

Navigation