Skip to main content
Log in

Specific inhibition by macrocyclic polyethers of mitochondrial electron transport at site I

  • Published:
Journal of bioenergetics Aims and scope Submit manuscript

Abstract

The macrocyclic polyethers dibenzo-18-crown-6 (XXVIII) and dicyclohexyl-18-crown-6 (XXXI) inhibit the valinomycin-mediated K+ accumulation energized by glutamate, α-ketoglutarate, malate plus pyruvate or isocitrate but not that promoted by succinate, ascorbate plus TMPD or ATP. The polyethers inhibit the oxidation of the former group of substrates without preventing either the oxidation of succinate or ascorbate plus TMPD or the hydrolysis of ATP.

The substrate oxidation inhibited by the macrocyclic polyethers is relieved in intact mitochondria by increasing the concentration of K+ in the medium. It is also completely reverted by supplementing the medium with valinomycin, Cs+ and phosphate, or else by the addition of vitamin K3.

In submitochondrial sonic particles the macrocyclic polyethers inhibit the oxidation of NADH as well as the ATP-driven reversal of electron flow at the site I of the electron transport chain. They also block the oxidation of NADH in non-phosphorylating Keilin-Hartree particles as well as in Hatefi's NADH-coenzyme Q reductase. The polyethers do not inhibit electron transport in mitochondria from the yeast which lack the first coupling site.

The inhibition of electron transport by the polyethers do not require of the addition of alkali metal cations such as K+ in intact mitochondria or other membrane preparations.

It is established that the macrocyclic polyethers XXVIII and XXXI, already characterized as mobile carrier molecules for K+ in model lipid membranes, inhibit electron transport at site I of the electron transport chain from mitochondrial membranes.

It is suggested that the ability of the polyethers to coordinate alkali metal cations in aqueous versus lipid environments, but not K+ transportper se, is related to their rotenone-like induced inhibition of electron flow in mitochondrial membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Pedersen,J. Amer. Chem. Soc.,89 (1967) 7017.

    Google Scholar 

  2. C. J. Pedersen,Fed. Proc.,27 (1968) 1305.

    PubMed  Google Scholar 

  3. G. Eisenman, S. M. Ciani and G. Szabo,Fed. Proc.,27 (1968) 1289.

    PubMed  Google Scholar 

  4. B. C. Pressman,Fed. Proc.,27 (1968) 1283.

    PubMed  Google Scholar 

  5. D. C. Tosteson,Fed. Proc. 27 (1968) 1269.

    PubMed  Google Scholar 

  6. H. A. Lardy,Fed. Proc.,27 (1968) 1278.

    PubMed  Google Scholar 

  7. D. Johnson and H. A. Lardy,Meth. in Enzymol. X (1967) 94.

    Google Scholar 

  8. A. L. Smith,Meth. in Enzymol.,X (1967) 81.

    Google Scholar 

  9. J. R. Mattoon and W. X. Balcavage,Meth. in Enzymol. X (1967) 135.

    Google Scholar 

  10. Ch. T. Gregg,Meth. in Enzymol. 10 (1967) 181.

    Google Scholar 

  11. T. E. King,Meth. in Enzymol.,X (1967) 202.

    Google Scholar 

  12. Y. Hatefi and J. S. Rieske,Meth. in Enzymol.,X (1967) 235.

    Google Scholar 

  13. B. C. Pressman,Proc. Natl. Acad. Sci. U.S.,53 (1965) 1076.

    Google Scholar 

  14. B. C. Pressman,Meth. in Enzymol.,X (1967) 714.

    Google Scholar 

  15. S. N. Graven, S. Estrada-O. and H. A. Lardy,Proc. Natl. Acad. Sci. U.S.,56 (1966) 654.

    Google Scholar 

  16. C. P. Lee and L. Ernster, in:Regulation of Metabolic Processes in Mitochondria (J. M. Tager, S. Papa, E. Quagliariello and E. C. Slater, Eds.),Biochim. Biophys. Acta Library 7 (1966) 218.

  17. B. Chance and G. R. Williams,Advanc. Enzymol.,17 (1956) 65.

    Google Scholar 

  18. H. A. Lardy and A. Wellman:J. Biol. Chem.,201 (1953) 537.

    Google Scholar 

  19. J. B. Sumner,Science,100 (1944) 413.

    Google Scholar 

  20. E. E. Jacobs, M. Jacob, D. R. Sanadi and L. B. Bradley,J. Biol. Chem.,223 (1956) 147.

    PubMed  Google Scholar 

  21. B. C. Pressman, E. J. Harris, W. S. Jagger and J. H. Johnson,Proc. Natl. Acad. Sci. U.S.,58 (1967) 1949.

    PubMed  Google Scholar 

  22. E. J. Harris, M. Hoffer and B. C. Pressman,Biochemistry (Wash.),6 (1967) 1348.

    Google Scholar 

  23. G. Eisenman, G. Szabo, S. G. McLaughlin and S. M. Ciani, in:Molecular Mechanisms of Antibiotic Action on Protein Biosynthesis and Membranes (D. Vazquez, Ed.), Springer-Verlag (1971) in the press.

  24. S. Estrada-O. and C. Gómez-Lojero,J. Biol. Chem.,245 (1970) 5606.

    PubMed  Google Scholar 

  25. M. Montal, B. Chance and C. P. Lee,J. Membrane Biol.,2 (1970) 201.

    Google Scholar 

  26. R. S. Cockrell and E. Racker,Biochem. Biophys. Res. Comm.,35 (1969) 414.

    PubMed  Google Scholar 

  27. T. E. Conover and L. Ernster,Biochim. Biophys. Acta.,58 (1962) 189.

    PubMed  Google Scholar 

  28. G. Schatz and E. Racker,Biochem. Biophys. Res. Commun.,22 (1966) 579.

    PubMed  Google Scholar 

  29. S. G. A. McLaughlin, G. Szabo, G. Eisenman and S. M. Ciani, Abstract,14th Annual Meeting of the Biophysical Society. (1970) Baltimore, Feb. 25, p. 96a.

  30. H. K. Frensdorff,J. Amer. Chem. Soc.,93 (1971) 3.

    Google Scholar 

  31. S. Estrada-O., S. N. Graven and H. A. Lardy,J. Biol. Chem.,242 (1967) 2925.

    PubMed  Google Scholar 

  32. C. Gitler, B. Rubalcava and A. Caswell,Biochim. Biophys. Acta,193 (1969) 473.

    Google Scholar 

  33. S. Estrada-O., B. Rubalcava and C. Gitler,J. Bioenergetics (in preparation).

  34. A. L. Tappel,Biochem. Pharmacol.,3 (1960) 289.

    PubMed  Google Scholar 

  35. P. Mitchell, in:Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation. (1966) Glynn Research Ltd. Bodmin, Cornwall, England.

    Google Scholar 

  36. P. Mitchell, in:Chemiosmotic Coupling and Energy Transuction. (1968). Glynn Research Ltd. Bodmin, Cornwall, England.

    Google Scholar 

  37. B. C. Pressman and J. K. Park,Biochem. Biophys. Res. Commun. 11 (1963) 182.

    PubMed  Google Scholar 

  38. S. M. F. Ferguson, S. Estrada-O. and H. A. Lardy,J. Biol. Chem.,246 (1971) 5645.

    Google Scholar 

  39. A. Gómez-Puyou, F. Sandoval, E. Pena, E. Chávez and M. Tuena,J. Biol. Chem.,244 (1969) 5339.

    PubMed  Google Scholar 

  40. A. R. Krall, T. T. Meng, S. J. Harmon and W. J. Dougherty,Fed. Proc.,30 (II) (1971) 1357.

    Google Scholar 

  41. R. M. Izzat, J. H. Rytting, D. P. Nelson, B. L. Haymore and J. J. Christensen,Science,164 (1969) 443.

    PubMed  Google Scholar 

  42. H. Baltscheffsky and B. Arwiddson,Biochim. Biophys. Acta.,65 (1962) 425.

    PubMed  Google Scholar 

  43. Z. Gromet-Elhanan,Biochim. Biophys. Acta 223 (1970) 174.

    PubMed  Google Scholar 

  44. R. F. McCarthy,J. Biol. Chem.,244 (1969) 4292.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by a Grant from the Research Corporation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estrada-O, S., Cárabez, A. Specific inhibition by macrocyclic polyethers of mitochondrial electron transport at site I. J Bioenerg Biomembr 3, 429–443 (1972). https://doi.org/10.1007/BF01516081

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01516081

Keywords

Navigation