Skip to main content
Log in

Microwave Hall mobility measurements on heavy beef heart mitochondria

  • Published:
Journal of bioenergetics Aims and scope Submit manuscript

Abstract

The observed initial microwave Hall mobility values at 1·21 tesla of heavy beef heart mitochondria is at least six times greater than that observed for bovine serum albumin at similar resistivity values. The respiratory inhibitor cyanide significantly reduces the initial Hall mobility values for HBHM and for a preparation of HBHM cytochrome oxidase.

The four enzymic complexes of the respiratory chain were partially or completely separated. Of these complexes cytochrome oxidase exhibits the largest microwave Hall mobility.

The maximum hydration content of loosely bound water for freezedried preparations of cytochrome oxidase is 5% by weight; 60% of this hydration content is driven off by microwave power. Since the effective ac resistivity of the samples of cytochrome oxidase did not appreciably vary with changes in hydration content, the true resistivity of cytochrome oxidase has a value of the order 5×103 ohm cm and possibly much lower.

The electron transport pathway (as measured by Hall signal) of cytochrome oxidase is irreversibly damaged by prolonged exposure to microwave irradiation at 9·2 GHz. This is accompanied by the complete loss of capacity to oxidise ferrocytochromec. Such changes do not occur with HBHM or with the other respiratory complexes.

There appears to be a direct relationship between observed Hall signals and the capacity of cytochrome oxidase to oxidize ferrocytochromec. There is a “background” signal which is not directly related to electron transport but which is dependent on the conformation of the cytochrome oxidase.

The observed electronic parameters of cytochrome oxidase do not depend appreciably on its redox state.

Acid denaturation of cytochrome oxidase drastically reduces the Hall signal, to include almost complete removal of the “background” signal. It also more than doubles ac resistivity.

An electron tunnelling model is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Chance and E. L. Spencer,Disc. Faraday Soc.,27 (1959) 200.

    Google Scholar 

  2. M. Klingenberg, in:Biological Oxidations, by T. Singer (ed.), Wiley, New York, 1968, p. 19.

    Google Scholar 

  3. D. D. Eley and R. Pethig,J. Bioenergetics,2 (1971) 39.

    Google Scholar 

  4. E. M. Trukhan,Pribory tekhm. eskper,4 (1965) 198.

    Google Scholar 

  5. D. D. Eley and R. Pethig,Disc. Faraday Soc.,51 (1971) 164.

    Google Scholar 

  6. A. L. Smith,Methods in Enzymology, Vol. X, R. W. Estabrook, and M. E. Pullman (eds.), Academic Press, New York and London, 1967, p. 81.

    Google Scholar 

  7. Y. Hatefi and J. S. Rieske,Methods in Enzymology, Vol. X, R. W. Estabrook and M. E. Pullman (eds.), Academic Press, New York and London, 1967, p. 225.

    Google Scholar 

  8. D. Ziegler and J. S. Rieske,Methods in Enzymology, Vol. X, R. W. Estabrook and M. E. Pullman (eds.), Academic Press, New York and London 1967, p. 231.

    Google Scholar 

  9. D. E. Griffiths and D. C. Wharton,J. Biol. Chem.,236 (1961) 1850.

    PubMed  Google Scholar 

  10. D. C. Wharton and A. Tzagoloff,Methods in Enzymology, Vol. X, R. W. Estabrook and M. E. Pullman (eds.), Academic Press, New York and London (1967) p. 245.

    Google Scholar 

  11. T. E. King,Methods in Enzymology, Vol. X, R. W. Estabrook and M. E. Pullman (eds.) Academic Press, New York and London, 1967, p. 216.

    Google Scholar 

  12. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall,J. Biol. Chem.,193 (1951) 265.

    PubMed  Google Scholar 

  13. D. Keilin and E. F. Hartree,Proc. Roy. Soc., London, B,127 (1939) 167.

    Google Scholar 

  14. B. F. Van Gelder and A. O. Muijers,Biochim. Biophys. Acta,81 (1964) 405.

    Google Scholar 

  15. D. D. Eley, R. J. Mayer and R. Pethig,J. Bioenergetics,3 (1972) 271.

    Google Scholar 

  16. A. O. Muijers, R. H. Tiesjema and B. F. Van Gelder,Biochem. Biophys. Acta,234 (1971) 468.

    PubMed  Google Scholar 

  17. D. W. Urry and P. Daty,Amer. Chem. Soc.,87 (1965) 2756.

    Google Scholar 

  18. R. E. Dickerson, T. Takano, D. Eisenberg, O. B. Kallai, L. Samson, A. Cooper and E. Margoliash,J. Biol. Chem.,246 (1971) 1511.

    PubMed  Google Scholar 

  19. D. D. Eley and D. I. Spivey,Trans. Faraday Soc.,56 (1960) 1432.

    Google Scholar 

  20. D. D. Eley and M. R. Willis, in:Symposium on Electrical Conductivity in Organic Solids, H. Kallman and M. Silver (eds.), Wiley (Interscience), New York, 1961, p. 257.

    Google Scholar 

  21. D. D. Eley, in:Organic Semiconducting Polymers, J. E. Katon (ed.), Arnold, London, Marcel Dekker, Inc., New York, 1968, p. 259.

    Google Scholar 

  22. M. G. Evans and J. Gergely,Biochim. Biophys. Acta,3 (1949) 188.

    Google Scholar 

  23. M. Suard, G. Berthier and B. Pullman,Biochim. Biophys. Acta,52 (1961) 254.

    PubMed  Google Scholar 

  24. B. Rosenberg and E. Postow,Ann. N.Y. Acad. Sci.,158 (1969) 161.

    PubMed  Google Scholar 

  25. F. W. Cope and K. D. Straub,Bull. Math. Biophys.,31 (1969) 761.

    PubMed  Google Scholar 

  26. D. D. Eley and E. Metcalfe,Nature, in press.

  27. H. R. Mahler and E. H. Cordes,Biological Chemistry, Harper and Rov, New York, 1966, pp. 568, 600.

    Google Scholar 

  28. P. L. Dutton, D. F. Wilson and Chuan-Pu Lee,Biochemistry,9 (1970) 5077.

    PubMed  Google Scholar 

  29. M. Erecinska, B. Chance and D. F. Wilson,FEBS Letters,16 (1971) 284.

    PubMed  Google Scholar 

  30. F. Gutmann and L. E. Lyons,Organic Semiconductors, Wiley, New York, 1967, p. 704.

    Google Scholar 

  31. M. Klingenberg, inBiological Oxidations, T. P. Singer (ed.), Wiley (Interscience) New York, 1968, p. 16.

    Google Scholar 

  32. A. L. Lehninger,The Mitochondrion, W. A. Benjamin, New York, 1965, p. 30.

    Google Scholar 

  33. E. Racker,Essays in Biochemistry,6 (1970) 1.

    PubMed  Google Scholar 

  34. E. C. Slater,Quarterly Rev. of Biophysics,4 (1971) 35.

    Google Scholar 

  35. A. Gierer,Biochem. Biophys. Acta,17 (1955) 111.

    PubMed  Google Scholar 

  36. D. D. Eley and R. Pethig,J. Bioenergetics,2 (1971) 39.

    Google Scholar 

  37. C. B. Duke,Tunnelling in Solids, Solid State Physics Supplement 10, Academic Press, New York, 1969, p. 115.

    Google Scholar 

  38. F. W. Cope,Bull. Math. Biophysics,33 (1967) 642.

    Google Scholar 

  39. D. De Vault, J. H. Parkes and B. Chance,Nature,215 (1967) 642.

    PubMed  Google Scholar 

  40. Q. H. Gibson, in:Biological Oxidations, T. P. Singer (ed.), Wiley (Interscience), New York, 1968, p. 403.

    Google Scholar 

  41. A. Terenin and I. Akimov,Zeit. Physikal Chem.,217 (1961) 307.

    Google Scholar 

  42. A. V. Vannikov and L. I. Boguslavskii,Biofizika,14 (1969) 421.

    PubMed  Google Scholar 

  43. E. F. Korman, A. D. F. Addink, T. Wakabayashi and D. E. Green,J. Bioenergetics,1, (1970) 9.

    Google Scholar 

  44. K. M. C. Davis, D. D. Eley and R. S. Snart,Nature,188 (1960) 724.

    PubMed  Google Scholar 

  45. M. H. Cardew and D. D. Eley,Disc. Faraday Soc.,27 (1959) 115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eley, D.D., Mayer, R.J. & Pethig, R. Microwave Hall mobility measurements on heavy beef heart mitochondria. J Bioenerg Biomembr 4, 187–200 (1973). https://doi.org/10.1007/BF01516056

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01516056

Keywords

Navigation