Skip to main content
Log in

Mitochondrial oxidative phosphorylation at Site I involving a fatty aldehyde/acid couple

  • Published:
Journal of bioenergetics Aims and scope Submit manuscript

Abstract

A mechanism for respiration and oxidative phosphorylation at Site I is proposed which involves reduction by NADH of a thioester of a fatty acid to aldehyde. Oxidation of the aldehyde by non-heme iron forms fatty acid which initially binds to a membrane base. As the non-heme iron reduces, entropy is lost through the stretching of a lipid bilayer attached to the non-heme iron and the membrane and to which the fatty acid chain binds. Simultaneously energy is expended in separating carboxyl ion from the protonated base. The charge separation induces movements of protons and reactants which result in the formation of ATP. Subsequent oxidation of non-heme iron relaxes the stretched lipid and the entropy gain in the fatty acid contributes to reformation of its thioester. The mechanism accounts in detail for many observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. E. Weiss,Aust. J. Biol. Sci 22 (1969) 1389.

    Google Scholar 

  2. D. E. Weiss,Search,2 (1971) 48.

    Google Scholar 

  3. D. E. Weiss, Mary L. Webb, F. L. Bygrave and R. N. Robertson, Unpublished data.

  4. E. C. Slater,Nature,172 (1953) 975.

    PubMed  Google Scholar 

  5. P. D. Boyer, in:Oxidases and Related Redox Systems, T. E. King, H. S. Mason and M. Morrison (eds.), John Wiley and Sons, Inc, New York, Vol. 2, 1964, p. 1944.

    Google Scholar 

  6. B. T. Storey,J. Theor. Biol. 28 (1970) 233.

    PubMed  Google Scholar 

  7. R. A. Harris, J. T. Penniston, J. Asai and D. E. Green,Proc. Nat. Acad. Sci., U.S.A.,59 (1968) 830.

    Google Scholar 

  8. T. E. King, M. Kuboyama and S. Takemori, in:Oxidases and Related Redox Systems, T. E. King, H. S. Mason and M. Morrison (eds.) John Wiley and Sons, Inc, New York, Vol. 2, 1964, p. 707.

    Google Scholar 

  9. G. D. Greville, in:Current Topics in Bioenergetics, D. R. Sanadi (ed.),3 (1969) 1.

  10. R. J. P. Williams,Current Topics in Bioenergetics,3 (1969) 79.

    Google Scholar 

  11. P. D. Boyer, in:Biological Oxidation, T. P. Singer (ed.), Interscience, 1967, p. 193.

  12. D. E. Weiss,Aust. J. Biol. Sci.,22 (1969) 1337.

    Google Scholar 

  13. D. E. Weiss,Aust. J. Biol. Sci.,22 (1969) 1355.

    Google Scholar 

  14. D. E. Weiss,Aust. J. Biol. Sci.,22 (1969) 1373.

    Google Scholar 

  15. M. Klingenberg, R. Wulf, H. W. Heldt and E. Pfaff,FEBS Symposium,17 (1969) 59.

    Google Scholar 

  16. J. M. Lowenstein and B. Chance,J. Biol. Chem.,243 (1968) 3940.

    PubMed  Google Scholar 

  17. K. van Dam and E. C. Slater,Proc. Nat. Acad. Sci., U.S.A.,58 (1967) 2015.

    Google Scholar 

  18. V. P. Skulachev, A. A. Jasaites, V. V. Navickaite, L. S. Yaguzhinsky, E. A. Liberman, V. P. Topali and L. M. Zogina,FEBS Symposium,17 (1969) 275.

    Google Scholar 

  19. M. J. Weidemann, H. Erdelt and M. Klingenberg,Eur. J. Biochem.,16 (1970) 313.

    PubMed  Google Scholar 

  20. D. F. Wilson, H. P. Ting and M. S. Koppelman,Biochem.,10 (1971) 2897.

    Google Scholar 

  21. C. I. Ragan and P. B. Garland,Biochem. J.,124 (1971) 171.

    PubMed  Google Scholar 

  22. B. Chance, C. P. Lee, I. Y. Lee, T. Ohnishi and J. Higgins, in:Electron Transport and Energy Conservation, J. M. Tager, S. Papa, E. Quagliariello and E. C. Slater (eds.), Adriatica Editrice, 1970, p. 29.

  23. T. P. Singer and M. Gutman,Advances in Enzymol.,34 (1971) 79.

    Google Scholar 

  24. L. Wojtczak, K. Bogucka, M. G. Sarzala and H. Zaluska,FEBS Symposium,17 (1969) 79.

    Google Scholar 

  25. S. G. Van den Bergh, C. P. Modder, J. H. M. Souverijn and H. C. J. M. Pierrot,FEBS Symposium,17 (1969) 137.

    Google Scholar 

  26. A. B. Falcone and R. L. Mao,Biochim. Biophys. Acta,105 (1965) 233.

    PubMed  Google Scholar 

  27. A. B. Falcone and R. L. Mao,Biochim. Biophys. Acta,105 (1965) 246.

    PubMed  Google Scholar 

  28. B. Mackler, M. L. Cowger and R. F. Igo,Biochim. Biophys. Acta,52 (1961) 203.

    PubMed  Google Scholar 

  29. K. V. Rajagopalan and P. Handler,J. Biol. Chem. 239 (1964) 2022, 2027.

    PubMed  Google Scholar 

  30. S. P. J. Albracht and E. C. Slater,Biochim. Biophys. Acta,223 (1970) 457.

    PubMed  Google Scholar 

  31. M. Gutman, M. Mayr, R. Oltzik and T. P. Singer,Biochem. Biophys. Res. Commun.,41 (1970) 40.

    PubMed  Google Scholar 

  32. C. S. Yang and F. M. Huennekens,Biochem.,9 (1970) 2127.

    Google Scholar 

  33. C. R. Hackenbrock,J. Cell. Biol.,37 (1968) 345.

    PubMed  Google Scholar 

  34. T. E. King and F. C. Yong, in:Electron Transport and Energy Conservation, J. M. Tager, S. Papa, E. Quagliariello and E. C. Slater (eds.), Adriatica Editrice, Bari, 1970, p. 108.

    Google Scholar 

  35. S. Fleischer, A. Casu and B. Fleischer,Fed. Proc.,23, (1964) 486.

    Google Scholar 

  36. J. Machinist and T. P. Singer,J. Biol. Chem.,240 (1965) 3182.

    PubMed  Google Scholar 

  37. M. Gutman, T. P. Singer, H. Beinert and J. E. Casida,Proc. Nat. Acad. Sci.,65 (1970) 763.

    PubMed  Google Scholar 

  38. D. J. Horgan, M. Ohno, T. P. Singer and J. E. Casida,J. Biol. Chem.,243 (1968) 5967.

    PubMed  Google Scholar 

  39. P. Björntorp, H. A. Ellis and R. H. Bradford,J. Biol. Chem.,239 (1964) 339.

    PubMed  Google Scholar 

  40. H. W. Heldt and M. Klingenberg,Europ. J. Biochem.,4 (1968) 1.

    PubMed  Google Scholar 

  41. J. M. Lyons and J. K. Raison,Plant Physiol.,45 (1970) 386.

    PubMed  Google Scholar 

  42. J. K. Raison, J. M. Lyons, R. J. Mehlhorn and A. D. Keith,J. Biol. Chem.,246 (1971) 4036.

    PubMed  Google Scholar 

  43. R. H. Aranow and L. Witten,J. Phys. Chem.,64 (1960) 1643;J. Chem. Phys.,43 (1965) 1436.

    Google Scholar 

  44. P. M. Seeman,Int. Rev. Neurobiology,9 (1966) 145.

    Google Scholar 

  45. R. A. Harris, J. Munroe, B. Farmer, K. C. Kim and P. Jenkins,Arch. Biochem. Biophys.,142 (1971) 435.

    PubMed  Google Scholar 

  46. M. Poe, H. Gutfreund and R. W. Estabrook,Arch. Biochem. Biophys.,122 (1967) 204.

    PubMed  Google Scholar 

  47. D. Devault,Biochim. Biophys. Acta,225 (1971) 193.

    Google Scholar 

  48. M. Gutman, H. Mersmann, J. Lutky and T. P. SingerBiochem.,9 (1970) 2678.

    Google Scholar 

  49. D. D. Tyler, R. A. Butow, J. Gouze and R. W. Estabrook,Biochem. Biophys. Res. Commun.,19 (1965) 551.

    PubMed  Google Scholar 

  50. L. L. Ingraham, in:Biochemical Mechanisms, 1962, p. 89.

  51. R. J. Van de Stadt, F. J. R. M. Nieuwenhius and K. Van Dam,Biochim. Biophys. Acta,234 (1971) 173.

    PubMed  Google Scholar 

  52. S. Papa, A. Alifano, J. M. Tager and E. Quagliariello,Biochim. Biophys. Acta,153 (1968) 303.

    PubMed  Google Scholar 

  53. M. J. Selwyn,Nature,219 (1968) 490.

    PubMed  Google Scholar 

  54. J. H. M. Souverijn, P. J. Weijers, G. S. P. Groot and A. Kemp,Biochim. Biophys. Acta,223 (1970) 31.

    PubMed  Google Scholar 

  55. F. L. Bygrave and A. L. Lehninger,Proc. Nat. Acad. Sci. U.S.A.,57 (1967) 1409.

    Google Scholar 

  56. L. L. Grinius, T. I. Guds and V. P. Skulachev,J. Bioenergetics,2 (1971) 101.

    Google Scholar 

  57. L. Packer, M. P. Donovan and J. M. Wrigglesworth,Biochem. Biophys. Res. Commun.,35 (1969) 832.

    PubMed  Google Scholar 

  58. A. Azzi and H. Vainio, in:Electron Transport and Energy Conservation, J. M. Tager, S. Papa, E. Quagliariello and E. C. Slater (eds.), Adriatica Editrice, Bari, 1970, p. 540.

    Google Scholar 

  59. B. Chance, G. Radda and C. P. Lee, in:Electron Transport and Energy Conservation, J. M. Tager, S. Papa, E. Quagliariello and E. C. Slater (eds.), Adriatica Editrice, Bari, 1970 p. 551.

    Google Scholar 

  60. D. D. Tyler,Biochem. J.,111 (1969) 665.

    PubMed  Google Scholar 

  61. M. Klingenberg and E. Pfaff, in:Metabolic Roles of Citrate., T. W. Goodwin (ed.), Academic Press, New York, 1968, p. 105.

    Google Scholar 

  62. C. P. Lee and L. Ernster,Eur. J. Biochem.,3 (1968) 301.

    Google Scholar 

  63. B. C. Pressman,J. Biol. Chem.,238 (1963) 401.

    Google Scholar 

  64. D. M. Blow, J. J. Birktoft and B. S. Hartley,Nature,221 (1969) 339.

    Google Scholar 

  65. W. N. Aldridge and M. S. Rose,FEBS Letters,4 (1969) 61.

    PubMed  Google Scholar 

  66. T. E. Conover, J. Gouze and R. W. Estabrook,Biochim. Biophys. Acta,81 (1964) 587.

    PubMed  Google Scholar 

  67. R. L. Cross, B. A. Cross and Jui H. Wang,Biochem. Biophys. Res. Commun.,40 (1970) 1155.

    PubMed  Google Scholar 

  68. R. L. Cross and P. D. Boyer,Fed. Proc.,30(3), Part II, Abstract No. 1127 (1971).

  69. P. D. Boyer,Science,141 (1963) 1147.

    Google Scholar 

  70. P. D. Boyer,Current Topics in Bioenergetics,2, (1967) 99.

    Google Scholar 

  71. R. D. Hill and P. D. Boyer,J. Biol. Chem.,242, (1967) 4320.

    PubMed  Google Scholar 

  72. R. A. Mitchell, R. D. Hill and P. D. Boyer,J. Biol. Chem.,242 (1967) 1793.

    PubMed  Google Scholar 

  73. D. M. Jones and P. D. Boyer,J. Biol. Chem.,244 (1969) 5767.

    PubMed  Google Scholar 

  74. L. Packer and K. Utsumi,Arch. Biochem. Biophys.,131 (1969) 386.

    PubMed  Google Scholar 

  75. R. A. Dilley,Arch. Biochem. Biophys.,137 (1970) 270.

    PubMed  Google Scholar 

  76. H. C. Hemker,Biochim. Biophys. Acta,81 (1964) 1 and 9.

    Google Scholar 

  77. R. Amons, S. G. Van den Bergh and E. C. Slater,Biochim. Biophys. Acta,162 (1968) 452.

    PubMed  Google Scholar 

  78. R. Berezney, Y. C. Awasthi, L. K. Funk and F. L. Crane,J. Bioenergetics,1 (1970) 445.

    Google Scholar 

  79. R. Berezney, Y. C. Awasthi and F. L. Crane,J. Bioenergetics,1 (1970) 457.

    Google Scholar 

  80. A. M. Robertson, C. T. Holloway, I. G. Knight and R. B. Beechey,Biochem. J.,108 (1968) 445.

    PubMed  Google Scholar 

  81. R. B. Beechey, A. M. Robertson, C. T. Holloway and I. G. Knight,Biochem.,6 (1967) 3867.

    Google Scholar 

  82. K. J. Cattell, I. G. Knight, C. R. Lindop and R. B. Beechey,Biochem. J.,117 (1970) 1011.

    PubMed  Google Scholar 

  83. A. Bruni, A. Pitotti, A. R. Contessa and P. PalatiniBiochem. Biophys. Res. Commun.,44 (1971) 268.

    PubMed  Google Scholar 

  84. G. Schafer,Biochim. Biophys. Acta,172 (1969) 334.

    PubMed  Google Scholar 

  85. R. C. Guillory and E. c. Slater,Biochim. Biophys. Acta,105 (1965) 221.

    PubMed  Google Scholar 

  86. F. Davidoff,J. Biol. Chem.,246 (1971) 4017.

    PubMed  Google Scholar 

  87. R. B. Beechey,Biochem. J.,116 (1970) 6P.

    Google Scholar 

  88. R. S. Cockrell, E. J. Harris and B. C. Pressman,Biochem.,5 (1966) 2326.

    Google Scholar 

  89. A. L. Lehninger,Biochem. J.,119 (1970) 129.

    PubMed  Google Scholar 

  90. B. Chance,J. Biol. Chem.,240 (1965) 2729.

    PubMed  Google Scholar 

  91. F. Palmieri and E. Quagliariello,Europ. J. Biochem.,8 (1969) 473.

    PubMed  Google Scholar 

  92. P. B. Garland, B. A. Haddock and D. W. Yates,FEBS Symposium,17 (1969) 111.

    Google Scholar 

  93. S. M. Johnson and A. D. Bangham,Biochim. Biophys. Acta,193 (1969) 92.

    PubMed  Google Scholar 

  94. A. Kappas and R. H. Palmer,Pharmacol. Rev.,15 (1963) 123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, D.E. Mitochondrial oxidative phosphorylation at Site I involving a fatty aldehyde/acid couple. J Bioenerg Biomembr 3, 305–337 (1972). https://doi.org/10.1007/BF01515976

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01515976

Keywords

Navigation