Skip to main content
Log in

Surface charge and calcium binding in sarcoplasmic reticulum membranes

  • Published:
Journal of bioenergetics Aims and scope Submit manuscript

Abstract

Vesicles of fragmented sarcoplasmic reticulum membranes have been adsorbed on to 2.68μ latex spheres. Observation of these vesicle containing spheres in the presence of an electric field allows a calculation of the electrophoretic mobility of the vesicles Following this determination, the net membrane surface charge has been estimated. The mobility of sarcoplasmic reticulum membranes exhibited a dependency on pH. At an ionic strength of 0.10 a mobility (pH=7.0) of −0.67±0.10μ/sec/volt/cm was observed. At pH=7.0 and Г/2=0.150 the net excess negative charge density was 2.0×10−2 coul/m2. This is equivalent to one charge per 103 A2 (assuming a uniform charge distribution). With an average vesicle volume of 2.8×108 A3 and a surface area of 2×106 A2 the surface of one vesicle would contain a net of approximately 2×103 negative charges. While the mobility did not change during uptake of calcium by the vesicles, both glutaraldehyde fixation and lecithin extraction by phospholipase C greatly altered the mobility of the vesicle membrane. Calcium binding and uptake both exhibited a dependence on pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. G. Van Der Kloot,Comp. Biochem. Physiol.,15 (1965) 547.

    PubMed  Google Scholar 

  2. A. P. Carvalho,J. Cell Physiol.,67 (1966) 73.

    PubMed  Google Scholar 

  3. A. Weber, R. Herz and I. Reiss,Biochemische Zeitschrift,345 (1966) 329.

    Google Scholar 

  4. A. Weber,Current Topics in Bioenergetics,1 (1966) 203.

    Google Scholar 

  5. G. Inesi and S. Watanabe,Archives of Biochemistry and Biophysics,121 (1967) 665.

    PubMed  Google Scholar 

  6. A. Martonosi, J. Donley and R. A. HalpinThe Journal of Biological Chemistry,243(1) (1968) 61.

    PubMed  Google Scholar 

  7. R. J. Baskin and D. W. Deamer,J. Cell Biol.,43 (1969) 610.

    PubMed  Google Scholar 

  8. D. W. Deamer and R. J. Baskin,J. Cell. Biol.,42 (1969) 296.

    PubMed  Google Scholar 

  9. R. J. Baskin,J. Cell Biol.,48, (1971) 49.

    PubMed  Google Scholar 

  10. T. Ohnishi and S. Ebashi,The Journal of Biochemistry,54(6), (1963) 506.

    Google Scholar 

  11. T. Ohnishi and T. Terasaki,The Journal of Biochemistry,61(6) (1967) 812.

    Google Scholar 

  12. A. P. Carvalho and B. Leo,The Journal of General Physiology,50 (1967) 1327.

    PubMed  Google Scholar 

  13. A. P. Carvalho and A. M. Mota,Archives of Biochemistry and Biophysics,142 (1971) 201.

    PubMed  Google Scholar 

  14. W. C. Landgraf and G. Inesi,Archives of Biochemistry and Biophysics,130, (1969) 111.

    PubMed  Google Scholar 

  15. G. Inesi, E. Maring, A. J. Murphy and B. H. McFarland,Archives of Biochemistry and Biophysics,138 (1970) 285.

    PubMed  Google Scholar 

  16. A. P. Carvalho,The Journal of General Physiology,52, (1968) 622.

    PubMed  Google Scholar 

  17. J. H. Northrup and M. Kunitz,J. Gen. Physiol.,7 (1924–25) 729.

    Google Scholar 

  18. L. S. Moyer and H. A. Abramson,J. Gen. Physiol.,19, (1936) 601.

    Google Scholar 

  19. D. K. Chattoraj and H. B. Bull,Biochim. Biophys. Acta,19 (1956) 3128.

    Google Scholar 

  20. H. B. Bull,J. American Chem. Soc.,80 (1958) 1901.

    Google Scholar 

  21. B. Fanburg and J. Gergely,The Journal of Biological Chemistry,240(6) (1965) 2721.

    PubMed  Google Scholar 

  22. A. D. Banghamet al., Nature,182 (1958) 642.

    PubMed  Google Scholar 

  23. D. C. Henry,Tran. Faraday Soc.,44 (1948) 1021.

    Google Scholar 

  24. S. Ghosh and H. B. Bull,J. Colloid Sci.,18, (1963) 157.

    Google Scholar 

  25. J. Overbeek,Adv. Colloid Sci.,3 (1950) 97.

    Google Scholar 

  26. D. A. Haydon,Proc. Roy. Soc. B.,258 (1960) 319.

    Google Scholar 

  27. A. Martonosi,Federation Proceedings,23(5) (1964) 913.

    PubMed  Google Scholar 

  28. T. Tenforde,Advances in Biological and Medical Physics,13 (1970).

  29. J. R. Sommer and W. Hasselbach,Brief Notes (1966) 902.

  30. D. D. Sabatini, K. Bensch and R. J. Barrnett,J. Cell Biol.,17 (1963) 19.

    PubMed  Google Scholar 

  31. J. B. Finean and A. Martonosi,Biochimica et Biophysica Acta,98 (1965) 547.

    PubMed  Google Scholar 

  32. A. Weber,The Journal of General Physiology,52 (1968) 760.

    PubMed  Google Scholar 

  33. F. A. Sreter,Archives of Biochemistry and Biophysics,134 (1969) 25.

    PubMed  Google Scholar 

  34. W. Hasselbach and L. Elfvin,J. Ultrastructure Research 17 (1967) 598.

    Google Scholar 

  35. L. D. Peachey,The Journal of Cell Biology,25 (1965) 209.

    PubMed  Google Scholar 

  36. Y. Nakamaru and A. Schwartz,Biochemical and Biophysical Research Communications,41(4) (1970) 830.

    PubMed  Google Scholar 

  37. P. F. Duggan and A. Martonosi,The Journal of General Physiology,56 (1970) 147.

    PubMed  Google Scholar 

  38. N. W. Carter, F. C. Rector, Jr., D. S. Campion and D. W. Seldin,Journal of Clinical Investigation,46(6) (1967) 920.

    PubMed  Google Scholar 

  39. E. J. Conway,Physiol. Rev.,37 (1957) 84.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baskin, R.J. Surface charge and calcium binding in sarcoplasmic reticulum membranes. J Bioenerg Biomembr 3, 249–269 (1972). https://doi.org/10.1007/BF01515973

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01515973

Keywords

Navigation