Skip to main content
Log in

Energy transfer in bacterial photosynthesis

I. Light intensity dependences of fluorescence lifetimes

  • Published:
Journal of bioenergetics Aims and scope Submit manuscript

Abstract

Four possible explanations are offered to account for low fluorescence increase observed for purple bacteria under transition from active to inhibited photosynthesis. The increase observed is inconsistent with high (≅1.0) yield of primary photosynthetic process of P890 photooxidation. The dependences of fluorescence yield and lifetime on the portion of active reaction centres have been analysed for each case. Experimental investigation carried out favours the existence of background fluorescence together with fluorescence, whose quantum yield correlates with the reaction centre functional state. The important conclusion is made that lifetime of photosynthetic fluorescence is much lower than 1 nsec and energy is transferred to the reaction centres by a mechanism other than inductive-resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. D. Dmitrievsky, V. L. Ermolaev and A. N. Terenin,Dokladi Academii Nauk SSSR,114 (1957) 75.

    Google Scholar 

  2. S. Brody and E. Rabinowitch,Science,125 (1957) 555.

    PubMed  Google Scholar 

  3. A. Müller, R. Lumry and M. S. Walker,Photochem. Photobiol.,9 (1969) 113.

    PubMed  Google Scholar 

  4. L. A. Tumerman and A. B. Rubin,Dokladi Academii Nauk SSSR,145, No. 1 (1962).

    Google Scholar 

  5. A. B. Rubin and L. K. Osnitskaya,Microbiol.,31 (1962) 163.

    Google Scholar 

  6. Z. Bay and R. M. Pearlstein,Proc. Natl. Acad. Sci. USA,50 (1963) 107.

    Google Scholar 

  7. Th. Förster,Ann. der Physic.,2 (1948) 55.

    Google Scholar 

  8. L. N. M. Duysens, Thesis, Utrecht, 1952.

  9. R. M. Pearlstein,Brookhaven Symp. in Biol., No. 19, 1967, p. 8.

    Google Scholar 

  10. G. W. Robinson,Brookhaven Symp. in Biol., No. 19, 1967, p. 16.

    Google Scholar 

  11. W. J. Vredenberg, L. M. N. Duysens,Nature,197 (1963) 355.

    PubMed  Google Scholar 

  12. R. K. Clayton,Photochem. Photobiol.,5 (1967) 807.

    Google Scholar 

  13. C. Sybesma and W. J. Vredenberg,Biochim. Biophys. Acta,75 (1963) 439.

    PubMed  Google Scholar 

  14. A. Yu. Borisov,Dokladi Academii Nauk SSSR,173 (1967) 208.

    Google Scholar 

  15. P. A. Loach and D. L. Secura,Biochemistry,7 (1968) 2642.

    PubMed  Google Scholar 

  16. A. Yu. Borisov and V. I. Godik,Biochim. Biophys. Acta 223 (1970) 441.

    PubMed  Google Scholar 

  17. E. N. Kondratieva,Photosynteziruyuschie Bacterii, Izdatelstvo Academii Nauk SSSR, Moskva, 1963, str. 29.

  18. A. Yu. Borisov and M. D. Il'ina,Biochimia,36 (1971) 825.

    Google Scholar 

  19. L. A. Tumerman and E. M. Sorokin,Molecularnaya Biologia,1 (1967) 628.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisov, A.Y., Godik, V.I. Energy transfer in bacterial photosynthesis. J Bioenerg Biomembr 3, 211–220 (1972). https://doi.org/10.1007/BF01515969

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01515969

Keywords

Navigation