Skip to main content
Log in

A study on the stability of blood vessels

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The paper deals with an analytical study on the stability of blood vessel walls. The theory of small deformation superposed on a known state of finite deformation, together with the anisotropic visco-elastic constitutive relations of Vaishnav and Patel [1] for vascular tissues, are employed for the purpose. By using the material functions of Young et al. [2], the latent instabilities of canine middle descending thoracic aortic wall are predicted in terms of the circumferential and axial extension ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vaishnav, R. N., J. T. Young, D. J. Patel, Non-linear visco-elasticity of large blood vessels, in: J. Baan, A. Noordergraaf, J. Raines (eds.), Cardiovascular system dynamics. Massachusetts Institute of Technology, pp. 140–153 (1978).

  2. Young, J. T., R. N. Vaishnav, D. J. Patel, J. Biomechanics10, 549 (1977).

    Google Scholar 

  3. Copley, A. C., G. Stainsby, Flow properties of blood and other biological systems, pp. 122–135, Pergamon Press (Oxford 1960).

    Google Scholar 

  4. Burton, A. C., Am. J. Physiol.164, 319 (1951).

    Google Scholar 

  5. Nichol, J. T., F. Girling, W. Jerrad, E. G. Claxton, A. C. Burton, Am. J. Physiol.164, 330 (1951).

    Google Scholar 

  6. Burton, A. C., Physical principles of circulatory phenomena: the physical equilibria of the heart and blood vessels. In: Handbook physiology. Circulation. Washington, D. C.: Am. Physiol. Soc., Sect. 2, Vol. I, Ch. 6, pp. 85–106 (1962).

  7. Folkow, B., B. Löfving, Acta Physiol. Scand.38, 31 (1957).

    Google Scholar 

  8. Azuma, T., S. Oka, Am. J. Physiol.221, 1310 (1971).

    Google Scholar 

  9. Oka, S., T. Azuma, Biorheology7, 109 (1970).

    Google Scholar 

  10. Taira, S., M. Sato, Mechanical analysis on stability of blood vessel walls. Full manuscripts of the symposium on Biomaterials, Kyoto University, Japan, pp. 97–103 (1975).

  11. Anliker, M., W. E. Moritz, E. Ogden, J. Biomech.1, 235 (1968).

    Google Scholar 

  12. Gow, B. S., M. G. Taylor, Circulat. Res.23, 111 (1968).

    Google Scholar 

  13. Misra, J. C., S. Chakrabarty, Rheol. Acta19, 381 (1980).

    Google Scholar 

  14. Misra, J. C., K. Roy Choudhury, Blood Vessels19, 19 (1982).

    Google Scholar 

  15. Green, A. E., W. Zerna, Theoretical elasticity, Oxford University Press (Oxford 1954).

    Google Scholar 

  16. Corneliussen, A. H., R. T. Shield, Arch. Rational Mech. Anal.7, 274 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, J.C., Choudhury, K.R. A study on the stability of blood vessels. Rheol Acta 21, 340–346 (1982). https://doi.org/10.1007/BF01515722

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01515722

Key words

Navigation