Skip to main content
Log in

Rheograms for asphalt from single viscosity measurement

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Asphalt materials are used in a variety of applications such as road paving, waterproofing, roofing membranes, adhesive binders, rust proofing and water resistant coatings. There are available in a number of grades distinguished in terms of their softening point and flow resistance. The selection of the proper grade of asphalt for a particular application is governed by the desired flow behaviour. A knowledge of the complete flow curve depicting the variation of melt viscosity with shear rate at the relevant temperatures is necessary not only for proper grade selection, but also for specifying processing conditions for aggregate mixing and spraying. The rheological data are also useful in assessing end use performance. The scientific techniques for generating the rheological data involve the use of expensive, sophisticated instruments. Generation of the necessary flow data using these instruments is beyond the financial and technical means of most processors of asphalt materials. The engineering techniques involving the use of inexpensive vacuum viscometers are relatively easy, but provide a single point viscosity measurement at low shear rate. In the present work, a method is proposed for unifying the viscosity versus shear rate a data at various temperatures for a number of asphalt grades. A master curve has been generated that is independent of the grade of asphalt and the temperature of viscosity measurement. The master curve can be used to generate rheograms at desired temperatures for the asphalt grade of interest, knowing its zero-shear viscosity at that temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kirk-Othmer, Encyclopedia of Chemical Technology2, 784 (1965).

    Google Scholar 

  2. Van der Poel, C., J. Appl. Chem. (London)4, 221 (1954).

    Google Scholar 

  3. The Asphalt Handbook, The Asphalt Institute, College Park, Maryland, Manual Series No. 4 (March 1960).

  4. Walther, C., Oel, Kohle1, 71 (1933).

    Google Scholar 

  5. Saal, R. N. J., G. J. Koens, Inst. Petrol. Technol.19, 136 (1933).

    Google Scholar 

  6. Traxler, R. N., Ind. Eng. Chem.30, 322 (1938).

    Google Scholar 

  7. Saal, R. N. J., J. W. A. Labout, J. Phys. Chem.44, 149 (1940).

    Google Scholar 

  8. Lewis, R. H., J. Y. Welborn, Public Roads21, 1 (1940).

    Google Scholar 

  9. Traxler, R. N., Ind. Eng. Chem.36, 823 (1944).

    Google Scholar 

  10. Saal, R. N. J., P. W. Baas, W. Heukelom, J. Chem. Phys.45, 235 (1946).

    Google Scholar 

  11. Pfeiffer, J. P., The Properties of Asphaltic Bitumen, Elsevier Publishing Co., Inc. (Amsterdam 1950).

    Google Scholar 

  12. Ward, S. H., K. A. Clark, Report No. 57, Alberta Res. Council (1950).

  13. Van der Poel, C., in: M. Reiner (ed.), Building Materials, their Elasticity and Inelasticity, p. 373, Interscience Publishers, Inc. (New York 1954).

    Google Scholar 

  14. Labout, J. W. A., W. P. Van Ort, Anal. Chem.28, 1147 (1956).

    Google Scholar 

  15. Brodnyan, J. G., Highway Res. Board Bulletin, p. 192, Washington D.C. (1958).

  16. Ree, T., H. Eyring, in: F. R. Eirich (ed.), Rheology Vol. II, p. 83, Academic Press Inc. (New York 1958).

    Google Scholar 

  17. Mack, C., Am. Chem. Soc., Div. Pet. Chem., Preprint5, A39 (1960).

    Google Scholar 

  18. Winniford, R. S., J. Inst. Petrol.49, 215 (1963).

    Google Scholar 

  19. Moavenzadeh, F., P. F. Brady, Proc. AAPT33, 320 (1964).

    Google Scholar 

  20. Sisko, A. W., Highw. Res. Rec.67, 27 (1965).

    Google Scholar 

  21. Pagen, C. A., B. Ku, Highw. Res. Rec.104, 124 (1965).

    Google Scholar 

  22. Puzinauskas, A., Proc. AAPT36, 489 (1967).

    Google Scholar 

  23. Dickie, J. P., T. F. Yen, Anal. Chem.39, 1847 (1947).

    Google Scholar 

  24. Moavenzadeh, F., J. Soussou, Highw. Res. Rec.256, 36 (1968).

    Google Scholar 

  25. Jongepier, R., B. Kuilman, Proc. AAPT38, 98 (1969).

    Google Scholar 

  26. Dobson, G. R., Proc. AAPT38, 123 (1969).

    Google Scholar 

  27. Ajour, A. M., Bull. Liaison Labo. P. et Ch.37, 149 (1969).

    Google Scholar 

  28. Lefebvre, J. A., W. D. Robertson, Proc. CTAA15, 101 (1970).

    Google Scholar 

  29. Fenijn, F., R. C. Krooshof, Proc. CTAA15, 123 (1970).

    Google Scholar 

  30. Meissner, J., Kunststoffe61, 576 (1971).

    Google Scholar 

  31. Carre, G., D. Laurent, Bulletin de l'Assoc. Fr. Tech. Petrol.157, 3 (1973).

    Google Scholar 

  32. Heukelom, W., Proc. AAPT42, 67 (1973).

    Google Scholar 

  33. Fenijn, J., Proc. CTAA18, 31 (1973).

    Google Scholar 

  34. Schweyer, H. E., Proc. AAPT43A, 121 (1974).

    Google Scholar 

  35. Kennel, M., Rev. Assoc. Fr. Tech. Petrol.225, 225 (1974).

    Google Scholar 

  36. Dickinson, E. J., H. P. Witt, Trans. Soc. Rheol.18, 591 (1974).

    Google Scholar 

  37. Marvillet, J., Proc. Assoc. Asph. Technol. Tech. Sessions44, 416 (1975).

    Google Scholar 

  38. Altget, K. H., O. L. Harle, Ind. Eng. Chem. Prod. Res. Dev.14, 240 (1975).

    Google Scholar 

  39. Ensley, E. K., J. Colloid Interf. Sci.53, 452 (1975).

    Google Scholar 

  40. Bestougeff, M., R. Dron, G. Morel, I. A. Voinovitch, Bull. Liaison Labo. P. et Ch.81, 113 (1976).

    Google Scholar 

  41. Schweyer, H. E., R. L. Baxley, A. M. Burns, ASTM Special Techn. Pub.628, 5 (1976).

    Google Scholar 

  42. Ensley, E. K., ASTM Special Techn. Pub.628, 43 (1976).

    Google Scholar 

  43. Gaw, W. J., ASTM Special Techn. Pub.628, 57 (1976).

    Google Scholar 

  44. Vinogradov, G. V., A. I. Isayev, V. A. Zolotarev, E. A. Verebskaya, Rheol. Acta16, 266 (1977).

    Google Scholar 

  45. Khong, T. D., M. Sc. Thesis, Laval University (1978).

  46. Khong, T. D., S. L. Malhotra, L. P. Blanchard, Rheol. Acta17, 654 (1978).

    Google Scholar 

  47. Khong, T. D., S. L. Malhotra, L. P. Blanchard, J. Inst. Petrol. IP 78-001 (1978).

  48. Khong, T. D., S. L. Malhotra, L. P. Blanchard, Rheol. Acta18, 382 (1979).

    Google Scholar 

  49. Dealy, J. M., Can. J. Chem. Eng.57, 677 (1979).

    Google Scholar 

  50. Balduhn, R., E. Fitzer, Carbon18, 155 (1981).

    Google Scholar 

  51. Vinogradov, G. V., A. Ya. Malkin, J. Polym. Sci. A2,44, 135 (1966).

    Google Scholar 

  52. Shenoy, A. V., S. Chattopadhyay, V. M. Nadkarni, Rheol. Acta (submitted for publication).

  53. Shenoy, A. V., D. R. Saini, V. M. Nadkarni, Rheol. Acta (submitted for publication).

  54. Shenoy, A. V., D. R. Saini, V. M. Nadkarni, J. Appl. Polym. Sci. (submitted for publication).

  55. Shenoy, A. V., D. R. Saini, V. M. Nadkarni, Polym. Composites (submitted for publication).

  56. Williams, M. L., R. F. Landel, J. D. Ferry, J. Am. Chem. Soc.77, 3701 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

NCL Communication Number 2914.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shenoy, A.V., Saini, D.R. & Nadkarni, V.M. Rheograms for asphalt from single viscosity measurement. Rheol Acta 21, 333–339 (1982). https://doi.org/10.1007/BF01515721

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01515721

Key words

Navigation