Skip to main content
Log in

Linearized dynamics for step jumps of velocity and displacement of shearing flows of a simple fluid

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 1983

Abstract

We consider linearized dynamics associated with step jumps in the velocity or displacement of the boundary of a fluid in a shearing motion. The discontinuity will propagate into the interior with a speed\(C = \sqrt {{{G\left( 0 \right)} \mathord{\left/ {\vphantom {{G\left( 0 \right)} \rho }} \right. \kern-\nulldelimiterspace} \rho }} \) (ρ is the density) if the initial valuesG(0) andG′(0) of the fading memory kernels are bounded, 0 <G(0) < ∞, − ∞ <G′ (0) < 0. IfG(0) ≠ ∞ butG′(0) = − ∞, then the boundary of the support of the solution still propagates with the speedC. However, the solutions on both sides of the boundary match together in aC -fashion. IfG(0) ≠ ∞ butG′(0) = 0, the amplitude of the discontinuity will not damp as in a purely elastic fluid. IfG(0) = ∞, the step change is felt immediately throughout the fluid, without shocks, as in Navier-Stokes fluids. This same type of parabolic behavior can be achieved by a small Newtonian contribution added to the integral form of the stress but if this contribution is small, a smooth transition layer around the shock will propagate with the speedC. In the case of step displacement, from rest to rest, singular surfaces of infinite velocity can propagate into the interior with speed of propagationC. The singular surfaces undergo multiple reflections off bounding walls, but the final steady state reached asymptotically is in universal form independent of material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., I. A. Stegun, A Handbook of Mathematical Functions. Dover, N.Y. (1972).

    Google Scholar 

  2. Bird, R. B., R. C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, John Wiley (New York 1977).

    Google Scholar 

  3. Böhme, G., Strömungsmechanik nichtnewtonscher Fluide. Teubner Studienbücher Mechanik; B. G. Teubner (Stuttgart).

  4. Carslaw, H. S., J. C. Jaeger, Operational Methods in Applied Mathematics, 2nd ed., p. 201, Dover (1963).

  5. Chadwick, P., B. Powdrill, Proc. Cambridge Philos. Soc.60, 313 (1964).

    Google Scholar 

  6. Coleman, B. D., E. H. Dill, R. A. Toupin, Arch. Rational. Mech. Anal.39, 358 (1970).

    Google Scholar 

  7. Coleman, B. D., M. Gurtin, J. Fluid Mech.33, 165 (1968).

    Google Scholar 

  8. Coleman, B. D., M. Gurtin, I. R. Herrera, Arch. Rational. Mech. Anal.19, 1 (1965).

    Google Scholar 

  9. Coleman, B. D., H. Markovitz, J. Polym. Sci., Polym. Phys.12, 2195 (1974).

    Google Scholar 

  10. Coleman, B. D., W. Noll, Arch. Rational Mech. Anal.3, 289 (1959).

    Google Scholar 

  11. Coleman, B. D., W. Noll, Arch. Rational Mech. Anal.6, 355 (1960).

    Google Scholar 

  12. Coleman, B. D., W. Noll, Revs. Modern Phys.33, 239 (1961).

    Google Scholar 

  13. Coleman, B. D., W. Noll, Trans. Soc. Rheol.5, 41 (1961).

    Google Scholar 

  14. Doetch, G., Introduction to the theory and application of Laplace Transforms, p. 226, Springer-Verlag (Berlin-Heidelberg-New York 1974).

    Google Scholar 

  15. Green, A. E., R. Rivlin, Arch. Rational Mech. Anal.4, 387 (1960).

    Google Scholar 

  16. Huilgol, R. R., Continuum mechanics of viscoelastic liquids, Halstead Press (New Delhi-New York 1975).

    Google Scholar 

  17. Kazakia, J. Y., R. S. Rivlin, Rheol. Acta20, 111 (1981).

    Google Scholar 

  18. Lodge, A. S., A classification of constitutive equation based on stress relation predictions for the single-jump shear strain experiment, Rheology Research Center Report, University of Wisconsin, Madison.

  19. Noll, W., Arch. Rational Mech. Anal.2, 197 (1958).

    Google Scholar 

  20. Renardy, M., Rheol. Acta21, 251 (1982).

    Google Scholar 

  21. Saut, J. C., D. D. Joseph, Arch. Rational Mech. Anal. (to appear in 1982).

  22. Slemrod, M., Arch. Rational Mech. Anal.,68, 211 (1978).

    Google Scholar 

  23. Sneddon, I. H., The use of Integral Transforms, McGraw-Hill, New York 1972.

    Google Scholar 

  24. Tanner, R. I., ZAMP13, 573 (1962).

    Google Scholar 

  25. Truesdell, C., W. Noll, The Non-Linear Field Theories of Mechanics, in: S. Flügge (ed.), Handbuch der Physik, Vol. III/3, Springer (Berlin-Heidelberg-New York 1965).

    Google Scholar 

  26. Watson, G. N., Theory of Bessel Functions, p. 511, Cambridge Press (1944).

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF01462940.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narain, A., Joseph, D.D. Linearized dynamics for step jumps of velocity and displacement of shearing flows of a simple fluid. Rheol Acta 21, 228–250 (1982). https://doi.org/10.1007/BF01515712

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01515712

Key words

Navigation