Advertisement

Genetica

, Volume 38, Issue 1, pp 43–53 | Cite as

Karyotypes and sex-determination in spider mites (Tetranychidae)

  • W. Helle
  • H. R. Bolland
Article

Abstract

The chromosomes of 13 species of spider mites (Tetranychidae) are determined using the aceto-orcein squash technique in order to establish the haplo-diploid sex-determination. 12 species showed the existence of haploid and diploid eggs:Neotetranychus rubi (Trägårdh) with 7 and 14 chromosomes;Eurytetranychus buxi (Garman) with 5 and 10;Bryobia sarothamni (Geijskes),Eotetranychus tiliarium (Joh. Hermann) andE. carpini (Oudemans) with 4 and 8;Panonychus ulmi (Koch),Schizotetranychus schizopus (Zacher),Oligonychus ununguis (Jacobi).Tetranychus hydrangeae Pritch. & Baker, T.pacificus McGregor,T. urticae Koch andT. cinnabarinus (Boisduval) with 3 and 6 chromosomes.

The progeny of virgin females in 7 different species consisted of eggs with the haploid complement. One species was shown to be thelytokous, viz.Tetranycopsis horridus (Canestrini & Franzago), having a diploid number of 4 chromosomes. Some eggs of an inbred line ofT. urticae showed a patchwork quilt of odd polyploidy in embryonic tissue.

Keywords

Inbred Line Spider Mite Virgin Female Embryonic Tissue Diploid Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boudreaux, H. B. (1963). Biological aspects of some phytophagous mites.Ann. Rev. Entomol. 8: 137–154.Google Scholar
  2. van Eyndhoven, G. L. &Helle, W. (1966). Sex abnormalities in the Common Spider Mite (Tetranychus urticae).Entomol. Ber. 26: 204–208.Google Scholar
  3. Fillipponi, A. (1964). Experimental taxonomy applied to theMacrochelidae.Acarologia 6 (fasc. hors série): 92–100.Google Scholar
  4. Hansell, I. C. R., M. M. Mollison &W. L. Putman (1964). A cytological demonstration of arrhenotoky in three mites of the familyPhytoseiidae.Chromosoma 15: 562–567.PubMedGoogle Scholar
  5. Helle, W. (1965). Inbreeding depression in an arrhenotokous mite.Ent exp. & appl. 8: 299–304.Google Scholar
  6. Oliver, J. H. (1964). Comments on karyotypes and sex determination in theAcari.Acarologia 6 (fasc. hors série): 288–293.Google Scholar
  7. Oliver, J. H. (1965). Cytogenetics of ticks (Acari: Ixodoidea). II, Multiple sex chromosomes.Chromosoma 17: 323–327.PubMedGoogle Scholar
  8. Oliver, J. H. (1965). Karyotypes and sex determination in some Dermanyssid mites.Ann. entomol. Soc. Am. 58: 567–573.PubMedGoogle Scholar
  9. Pritchard, A. E. &E. W. Baker (1955). A revision of the Spider Mite FamilyTetranychidae. Pac. Coast ent. Soc., San Francisco, 472 pp.Google Scholar
  10. Ries, D. T. (1935). A new mite (Neotetranychus buxi, n.s. Garman) on boxwoodJ. econ. Ent. 28: 55–62.Google Scholar
  11. Schrader, F. (1923). Haploidie bei einer Spinnmilbe.Arch. mikrosk. Anat. 97: 610–622.Google Scholar
  12. Taylor, E. A. &F. F. Smith (1956). Transmission of resistance between strains of two spotted spider mites.J. econ. Ent. 49: 858–859.Google Scholar
  13. van Zon, A. Q. &W. Helle (1966). Pigment mutations inTetranychus pacificus.Ent. exp. & appl. 9: 402–403.Google Scholar

Copyright information

© Martinus Nijhoff 1967

Authors and Affiliations

  • W. Helle
    • 1
  • H. R. Bolland
    • 1
  1. 1.Laboratory of Applied EntomologyUniversity of AmsterdamAmsterdam

Personalised recommendations