Skip to main content
Log in

Analysis ofK→3Π decays in chiral perturbation theory

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

Using the recently proposed higher-order chiral Lagrangians determined from the integration of nontopological chiral anomalies, we calculate corrections to the current-algebra analysis ofK→3Π decay amplitudes expanded in powers of the Dalitz variables. Effects of quartic-derivative weak chiral Lagrangians are determined through the use of short-distance effective weak Hamiltonian and the factorization method. We find that (1) the constant and linear terms in the amplitude for ΔI=1/2K→3Π are in excellent agreement with experiment; the previous discrepancy of (20–35)% between current algebra and data is thus accounted for by the higher-order effective Lagrangians, (2) the penguin interaction does not play an essential role in the ΔI=1/2 rule, for otherwise it will lead to a large disagreement for the constant and linear terms, (3) one of the two quadratic terms in the ΔI=1/2 process, which arise from the quartic chiral Lagrangians, is in accord with data within experimental errors, while the other is off by four standard deviations, (4) the linear term in the ΔI=3/2 transitions is in good agreement with experiment and contributions from quadratic terms are sizable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Cronin: Phys. Rev. 101 (1967) 1483

    Google Scholar 

  2. T.J. Devlin, J.O. Dickey: Rev. Mod. Phys. 51 (1979) 237

    Google Scholar 

  3. E. Golowich: Phys. Rev. D35 (1987) 2764; ibid. E. Golowich: Phys. Rev. D36 (1987) 3516

    Google Scholar 

  4. J.F. Donoghue, E. Golowich, B.R. Holstein: Phys. Rev. D30 (1984) 587

    Google Scholar 

  5. H.Y. Cheng, C.Y. Cheung, W.B. Yeung: Mod. Phys. Lett. A4 (1989) 869

    Google Scholar 

  6. J.S.R. Chisholm: Nucl. Phys. 26 (1961) 469

    Google Scholar 

  7. C. Bernard et al.: Phys. Rev. D32 (1985) 2343

    Google Scholar 

  8. K.C. Chou, H.Y. Guo, K. Wu, X.C. Song: Phys. Lett. 134B (1984) 67; G.C. Rossi, M. Testa, K. Yoshida:ibid.Phys. Lett. 134B (1984) 78; H. Kawai, S.-H. Tye: ibid. Phys. Lett. 140B (1984) 403; A. Dhar, S.R. Wadia: Phys. Rev. Lett. 52 (1984) 959; J.L. Petersen: Acta Phys. Pol. B16 (1985) 271; Ö. Kaymakcalan, S. Rajeev, J. Schechter: Phys. Rev. D30 (1984) 594; N.K. Pak, P. Rossi: Nucl. Phys. B250 (1985) 279

    Google Scholar 

  9. J. Balog: Phys. Lett. 149B (1984) 197; R.I. Nepomechie: Ann. Phys. (N.Y.) 158 (1984) 67; K. Seo: Gifu Report No. GWJC-1, 1984 (unpublished); A.A. Andrianov: Phys. Lett. 157B (1985) 425; see also D. Ebert, H. Reinhardt: Nucl. Phys. B271 (1986) 188

    Google Scholar 

  10. R. Mackenzie, F. Wilczek, A. Zee: Phys. Rev. Lett. 53 (1984) 2203; I.J.R. Aitchison, C.M. Fraser: Phys. Lett. 146B (1984) 63; G. Bhattacharya, S. Rajeev: in Proceedings of the Sixth Annual Montreal-Rochester-Syracuse-Toronto Meeting, Syracuse, 1984 Syracuse, New York: Syracuse University 1984; P. Simic: Phys. Rev. Lett. 55 (1985) 40; L.H. Chan: ibid. Phys. Rev. Lett. 55 (1985) 21; A. Zaks: Nucl. Phys. B260 (1985) 241

    Google Scholar 

  11. H.Y. Cheng: Phys. Rev. D36 (1987) 2056. The form factorf+(t) of the matrix element, say\(\left\langle {\pi ^ - |\bar s\gamma _\mu u|K^0 } \right\rangle \), is often expressed as (1+t/Λ 2). From the quartic-derivative LagrangianL (4) S , it is easy to check that Λ=2πf π. This scale is consistent with the upper bound\(2\sqrt 2 \pi f_\pi \) estimated by Manohar and Georgi [12]

    Google Scholar 

  12. A. Manohar, H. Georgi: Nucl. Phys. B234 (1984) 189

    Google Scholar 

  13. J. Gasser, H. Leutwyler: Nucl. Phys. B250 (1985) 465

    Google Scholar 

  14. J. Balog: Nucl. Phys. B258 (1985) 361

    Google Scholar 

  15. H.Y. Cheng: Phys. Rev. D34 (1986) 166

    Google Scholar 

  16. A.A. Bel'kov, A.V. Lanev: Sov. J. Nucl. Phys. 45 (1987) 312

    Google Scholar 

  17. A.A. Bel'kov, D. Ebert, V.N. Pervushin: Phys. Lett. 193B (1987) 315

    Google Scholar 

  18. L.F. Li, L. Wolfenstein: Phys. Rev. D21 (1980) 178

    Google Scholar 

  19. H.Y. Cheng: J. Mod. Phys. A4 (1989) 495

    Google Scholar 

  20. A.I. Vainshtein, V.I. Zakharov, M.A. Shifman: Sov. Phys. JETP 45 (1977) 670

    Google Scholar 

  21. L. Rosselet et al.: Phys. Rev. D15 (1977) 574

    Google Scholar 

  22. T.N. Pham: Phys. Lett. 145B (1984) 113; H.Y. Cheng: Phys. Rev. D36, (1986) 2056

    Google Scholar 

  23. It should be stressed that (4.16) is valid only under the factorization assumption

  24. J.F. Donoghue, B.R. Holstein, G. Valencia: Phys. Rev. D36 (1987) 798

    Google Scholar 

  25. S. Weinberg: in I.I. Rabi Festschrift, New York Acad. of Sci. (N.Y.) (1978); J. Gasser, H. Leutwyler: Phys. Rep. 87 (1982) 77

  26. C.T. Hill, G.G. Ross: Phys. Lett. 94B (1980) 234

    Google Scholar 

  27. J. Donoghue, E. Golowich, W. Ponce, B. Holstein: Phys. Rev. D21 (1980) 186

    Google Scholar 

  28. Various conjectures and speculations about the origin of the ΔI=1/2 rule are discussed in [19]

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, HY., Cheung, C.Y. & Yeung, W.B. Analysis ofK→3Π decays in chiral perturbation theory. Z. Phys. C - Particles and Fields 43, 391–400 (1989). https://doi.org/10.1007/BF01506534

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01506534

Keywords

Navigation