Skip to main content
Log in

Particle motions in sheared suspensions

XV. Effects of diffusion on collision doublets of fluid drops

  • Originalarbeiten
  • Kolloide und Natürliche Makromoleküle
  • Published:
Kolloid-Zeitschrift und Zeitschrift für Polymere Aims and scope Submit manuscript

Abstract

The effects of diffusion out of and into drops undergoing equatorial collision in laminar shear flow were studied. With an electric field perpendicular to the direction of flow, diffusion into undeformed drops enhanced coalescence, while diffusion from the drops inhibited it.

With marked outward diffusion, drops having a collision angle greater than 83° assumed a stable alignment in opposition to the velocity gradient for several minutes and then rotated to become a permanent head-on collision doublet. With inward diffusion the separation of drop centers increased along the paths of approach and the apparent angle of collision decreased. The phenomena were explained qualitatively on the basis of surface flow arising from concentration gradients at the drop surfaces.

Stable multiplets were formed on collision of highly deformed drops as a result of hydrodynamic forces both with and without diffusion.

Zusammenfassung

Die Wirkung der Diffusion aus den Tropfen heraus und in die Tropfen hinein auf ihr Verhalten bei äquatorialer Kollision in laminarer Scherströmung wurde untersucht. Bei Anlegen eines elektrischen Feldes senkrecht zur Fließrichtung verstärkt die Diffusion in undeformierte Tropfen die Koaleszenz, während Diffusion aus den Tropfen heraus sie verhindert.

Bei beträchtlicher Auswärtsdiffusion nehmen Tropfen, deren Kollisionswinkel größer als 83° ist, eine stabile Anordnung entgegen den Geschwindigkeitsgradienten für einige Minuten an und rotieren dann als ein dauerhaftes Dublett. Bei Einwärtsdiffusion wird der Abstand der Tropfenzentren längs der Wege der Annäherung erhöht und der scheinbare Kollisionswinkel vermindert. Das Phänomen läßt sich qualitativ auf der Basis einer Oberflächenströmung verursacht durch Konzentrationsgradienten an der Tropfenoberfläche, erklären.

Stabile Multipletts werden bei Kollision hochdeformierter Tropfen auf Grund hydrodynamischer Kräfte sowohl mit Einwärtsals auch Auswärtsdiffusion gebildet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a, b :

diameter and radius of drop

B :

breadth of ellipsoid

c :

radius of circle of contact for touching liquid drops

C A :

acetone concentration at pointA

C :

spherical elliptical orbit constant

D :

drop deformation=L − B/L + B

Eo :

electric field strength (directed alongY-axis)

fc):

fraction of doublets coalescing before Φc

F h, F:

hydrodynamic and total force

G :

velocity gradient

h :

minimum separation of two spheres

L :

length of ellipsoid

p η12 :

viscosity ratio

r e :

equivalent ellipsoidal axis ratio

R 1, R2 :

radii of inner and outerCouette cylinders

Δs :

linear separation of drop centers

t :

time

u, v, w :

velocity components alongX-, Y-, andZ-axis of shear field

x,y,z :

coordinates forCouette flow

Δx, Δy, Δz :

distance between two particle centers measured along coordinate axis

β:

constant in equation for hydrodynamic force

γ :

interfacial tension

η 12 :

viscosities of Phase 1 (drop) and Phase 2 (medium)

Θ 0, Φ:

colatitudinal and aximuthal spherical polar coordinates(Z=polar axis)

Θ, Φ 0 :

spherical polar coordinates of initial point of contact in collision of spheres (7)

Θ0′', Φ0′:

spherical polar coordinates of point of separation of collision doublet of spheres

τ :

rest time

\(\bar \tau \) :

algebraic mean rest time

Φ c :

coalescence angle

Φ m :

orientation of major axis of deformed drop in shear field

Φ r, Φr′:

rectilinear angles of collision and separation (7)

References

  1. MacKay, G. D. M. andS. G. Mason (J. Colloid Sci.18, 674 (1963).

    Article  CAS  Google Scholar 

  2. Bartok, W. andS. G. Mason, J. Colloid Sci.12, 243 (1957).

    Article  CAS  Google Scholar 

  3. Bartok, W. andS. G. Mason, J. Colloid Sci.14, 13 (1959).

    Article  CAS  Google Scholar 

  4. Jeffery, G. B., Proc. Roy. Soc. (London) A102, 161 (1922).

    Google Scholar 

  5. Taylor, G. I., Proc. Roy. Soc. (London) A146, 238 (1934).

    Google Scholar 

  6. Rumscheidt, F. D. andS. G. Mason, J. Colloid Sci.16, 238 (1961).

    Article  CAS  Google Scholar 

  7. Allan, R. S. andS. G. Mason, J. Colloid Sci.17, 383 (1962).

    Article  CAS  Google Scholar 

  8. Manley, R. St. J. andS. G. Mason, J. Colloid Sci.7, 354 (1952).

    Article  Google Scholar 

  9. Mooney, M., J. Colloid Sci.12, 575 (1957).

    Article  CAS  Google Scholar 

  10. Charles, G. E. andS. G. Mason, J. Colloid Sci.15, 236 (1960).

    Article  CAS  Google Scholar 

  11. Bartok, W. andS. G. Mason, J. Colloid Sci.13, 293 (1958).

    Article  CAS  Google Scholar 

  12. MacKay, G. D. M. andS. G. Mason, J. Colloid Sci.16, 632 (1961).

    Article  CAS  Google Scholar 

  13. Rumscheidt, F. D. andS. G. Mason, J. Colloid Sci.16, 210 (1961).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacKay, G.D.M., Mason, S.G. Particle motions in sheared suspensions. Kolloid-Z.u.Z.Polymere 195, 138–148 (1964). https://doi.org/10.1007/BF01503662

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01503662

Keywords

Navigation