Skip to main content
Log in

Mechanical retardation and relaxation in liquids

  • Published:
Rheologica Acta Aims and scope Submit manuscript

Summary

According to linear viscoelastic theory, the expressions for the complex compliance in cyclic shear at angular frequency,ω, and for the creep function are:

$$J*\sqrt 2 \left( {j\omega } \right) = J_\infty + 1/j\omega \eta + J_r \chi \left( {j\omega } \right)$$
([1])
$$J\left( t \right) = J_\infty + t/\eta + J_r \psi \left( t \right)$$
([2])

The normalised functionsχ(jω) andψ(t) are related through the spectrum of retardation times.

Recent work in the author's laboratory has shown that for non-polymeric liquidsχ(jω) can be closely represented by the empiricalDavidson-Cole expression used extensively to describe dielectric relaxation:

$$\chi \left( {j\omega } \right) = \frac{1}{{\left( {1 + j\omega \tau _r } \right)^\beta }}$$
([3])

τ r is a characteristic retardation time parameter and 0 <β < 1. For supercooled liquids,β is typically 0.5, in which case eq. [1] may be rewritten:

$$J*\left( {j\omega } \right) = J_\infty \left[ {1 + \frac{1}{{j\omega \tau _m }}} \right] + \frac{{J_r }}{{\left( {1 + j\omega \tau _r } \right)^{\tfrac{1}{2}} }}$$
([4])

τ m =ηJ is theMaxwell relaxation time.

Eq. [4] is fitted to experimental results for a number of liquids: the corresponding functionψ(t) in the time domain is found to fit the creep data ofPlazek for 1,3,5-tri-(α-naphthyl) benzene.

In practiceτ r >τ m below the “Arrhenius temperature” and forωτ r ≫ 1 eq. [4] reduces to the form of theBarlow, Erginsav andLamb equation used previously:

$$J*\left( {j\omega } \right) = J_\infty \left[ {1 + \frac{1}{{j\omega \tau _m }}} \right] + \frac{{2J_r }}{{\left( {1 + j\omega \tau _r } \right)^{\tfrac{1}{2}} }}$$
([5])

withJ r J =2(τ r /τ m )1/2.

A review is given of available experimental results which confirm the applicability of eq. [4] or, in more approximate form, eq. [5]. It has also been shown that within experimental accuracy:

  1. a)

    J is a linear function of temperature, and

  2. b)

    G (=1J ) is a linear function of pressure.

In the case of polymer melts, the behaviour at high frequencies where molecular movements are restricted to small elements of the polymer chain is found to be similar to that observed in non-polymeric liquids, eq. [5]. Additional contributions are found at lower frequencies due to entanglement effects. Results are given of preliminary measurements on a range of polystyrenes of narrow molecular weight distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlow, A. J., J. Lamb, A. J. Matheson, P. R. K. L. Padmini, andJ. Richter, Proc. Roy. Soc. (London),A298, 467–480 (1967).

    Google Scholar 

  2. Barlow, A. J., A. Erginsav, andJ. Lamb, Proc. Roy. Soc. (London),A298, 481–494 (1967).

    Google Scholar 

  3. Barlow, A. J. andJ. Lamb, Disc. Faraday Soc.43, 223–230 (1967).

    Google Scholar 

  4. Barlow, A. J., A. Erginsav, andJ. Lamb, Proc. Roy. Soc. (London),A309, 473–496 (1969).

    Google Scholar 

  5. Barlow, A. J., G. Harrison, J. B. Irving, M. G. Kim, J. Lamb, andW. C. Pursley, Proc. Roy. Soc. (London),A327, 403–412 (1972).

    Google Scholar 

  6. Irving, J. B. andA. J. Barlow, J. Physics E: Sci. Instruments,4, 232–236 (1971).

    Google Scholar 

  7. Gross, B., Mathematical structure of the theories of viscoelasticity (Paris Hermann 1953).

  8. Plazek, D. J. andV. M. O'Rourke, J. Pol. Sci.,9, 209–243 (1971).

    Google Scholar 

  9. Barlow, A. J. andA. Erginsav, Proc. Roy. Soc. (London),A327, 175–190 (1972).

    Google Scholar 

  10. Davidson, D. W. andR. H. Cole, J. Chem. Phys.,19, 1484–1490 (1951).

    Google Scholar 

  11. Williams, G. andM. Shears, Private Communication.

  12. Plazek, D. J. andJ. H. Magill, J. Chem. Phys.45, 3038–3050 (1966); J. Chem. Phys.49, 3678–3682 (1968).

    Google Scholar 

  13. Phillips, M. C., A. J. Barlow, andJ. Lamb, Proc. Roy. Soc., LondonA329, 193–218 (1972).

    Google Scholar 

  14. Goldstein, M., J. Chem. Phys.51, 3728–3739 (1969)

    Google Scholar 

  15. Barlow, A. J., J. Lamb, andA. J. Matheson, Proc. Roy. Soc.,A292, 322–342 (1966).

    Google Scholar 

  16. Barlow, A. J., G. Harrison, andJ. Lamb., Proc. Roy. Soc.,A282, 228–251 (1964).

    Google Scholar 

  17. Lamb, J. andP. Lindon, J. Acous. Soc. Amer.41, 1032–1042 (1967).

    Google Scholar 

  18. Barlow, A. J., R. A. Dickie, andJ. Lamb, Proc. Roy. Soc.,A300, 356–372 (1967).

    Google Scholar 

  19. Barlow, A. J., M. Day, G. Harrison, J. Lamb, andS. Subramanian, Proc. Roy. Soc.,A309, 497–520 (1969).

    Google Scholar 

  20. Plazek, D. J., J. Pol. Sci.6, 621–638 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 16 figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamb, J. Mechanical retardation and relaxation in liquids. Rheol Acta 12, 438–448 (1973). https://doi.org/10.1007/BF01502997

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01502997

Keywords

Navigation