Skip to main content
Log in

The stability of silver iodide sols in methanol-water media in the presence of HfCl4

  • Originalarbeiten
  • Kolloide
  • Published:
Kolloid-Zeitschrift und Zeitschrift für Polymere Aims and scope Submit manuscript

Summary

The stability of a negatively charged silver iodide sol in the presence of hafnium chloride in methanolwater media varied with pH and methanol content. At a constant pH, the critical coagulation concentrations (c.c.c.) and the critical stabilization concentrations (c.s.c.) go through a maximum as the alcohol content is increased from 0% to 80% w/w. This is explained as being due to methanol dipole adsorption with subsequent increase in the point of zero charge on the one hand, and by a decrease in counterion adsorption and a change in the chemical potential of the constituent Ag+ and I ions on the other hand. At constant methanol concentration, the c.c.c. and c.s.c. values increase with increasing pH, as does the counterion adsorption, showing the formation of lower charged species due to hydrolysis. The hydrolysis seems to be less extensive as the alcohol concentration is increased.

Zusammenfassung

Die Stabilität der negativ geladenen Silberjodid-Sole in Anwesenheit von HfCl4 wurde als Funktion von Methylalkoholzusatz und pH untersucht. Bei konstantem pH-Wert zeigten die kritische Koagulationskonzentration (c.c.c.) und die kritische Umladungskonzentration (c.s.c.) ein Maximum, wenn der Alkoholgehalt von 0% auf 80% erhöht wurde. Dieses Verhalten wurde durch die Dipoladsorption von Methylalkohol, die zu einer Erhöhung des Nullpunktes der Ladung führt, und durch die Erniedrigung der Gegenionenadsorption erklärt. Beim konstanten Alkoholzusatz werden die c.c.c., die c.s.c. und die Gegenionenadsorption mit steigendem pH höher. Dagegen scheint die Hydrolyse der Hafniumionen mit steigender Alkoholkonzentration schwächer zu sein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Derjaguin, B. andL. Landau, Acta Physicochim. (U.S.S.R)14, 633 (1941).

    Google Scholar 

  2. Verwey, E. J. andJ. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids (New York, N.Y. 1948).

  3. Težak, B. et al., J. Phys. Chem.57, 301 (1953).

    Article  Google Scholar 

  4. Težak, B. et al., J. Colloid Sci., Supplement1, 118 (1954).

    Article  Google Scholar 

  5. Težak, B. et al., Disc. Faraday Soc.18, 63 (1954).

    Article  Google Scholar 

  6. Kratohvil, J. andB. Težak, Arhiv. kem.27, 73 (1955).

    CAS  Google Scholar 

  7. Kratohvil, J., M. Orhanović, andE. Matijević, J. Phys. Chem.64, 1216 (1960).

    CAS  Google Scholar 

  8. Mackor, E. L., Rec. Trav. Chim.70, 841 (1951).

    Article  CAS  Google Scholar 

  9. Matijević, E., M. E. Ronayne, andJ. P. Kratohvil, J. Phys. Chem.70, 3830 (1966).

    Article  Google Scholar 

  10. Jirgensons, B., Kolloid-Z.51, 290 (1930).

    Article  CAS  Google Scholar 

  11. Dawson, L. R. andD. G. Oei, J. Colloid Sci.20, 282 (1965).

    Article  CAS  Google Scholar 

  12. Mackor, E. L., Rec. Trav. Chim.70, 747 (1951).

    Article  CAS  Google Scholar 

  13. Bijsterbosch, B. H. andJ. Lyklema, J. Colloid Sci.20, 665 (1965).

    Article  CAS  Google Scholar 

  14. Bockris, J. O'M., M. A. V. Devanathan, andK. Muller, Proc. Roy. Soc. (London)A274, 55 (1963).

    Google Scholar 

  15. Levine, S., A. L. Smith, andE. Matijević, J. Colloid Interface Sci.31, 409 (1969).

    CAS  Google Scholar 

  16. Starik, I. E., F. L. Ginzburg, andL. D. Sheidina, Radiokhimiya6, 19–26 (1964); Engl. Trans., pp. 16–21.

    CAS  Google Scholar 

  17. Matijević, E., S. Kratohvil, andL. J. Stryker, Disc. Faraday Soc.42, 187 (1966).

    Article  Google Scholar 

  18. Stryker, L. J. andE. Matijević, Kolloid-Z. u. Z. Polymere233, 912 (1969).

    Article  CAS  Google Scholar 

  19. Duval, C., Inorganic Thermogravimetric Analysis, 2nd Ed (New York 1963).

  20. Thomas, D. E. andE. T. Hayes, The Metallurgy of Hafnium, pp. 287–91 (U.S. Atomic Energy Comm., Washington, D. C., 1960).

    Google Scholar 

  21. Matijević, E. andL. J. Stryker, J. Colloid Interface Sci.31, 39 (1969).

    Article  Google Scholar 

  22. Stryker, L. J. andE. Matijević, Adv. Chem. Ser.79, 44 (1968).

    Article  CAS  Google Scholar 

  23. Stryker, L. J., Ph. D. Thesis, Clarkson College of Technology, Potsdam, New York (1968).

    Google Scholar 

  24. Težak, B., E. Matijević, andK. Schulz, J. Phys. Chem.55, 1557 (1951).

    Article  Google Scholar 

  25. Matijević, E. andM. Kerker, J. Phys. Chem.62, 1271 (1958).

    Article  Google Scholar 

  26. Matijević, E., K. G. Mathai, R. H. Ottewill, andM. Kerker, J. Phys. Chem.65, 826 (1961).

    Google Scholar 

  27. Bates, R. G., Determination of pH (New York 1964).

  28. Gelsema, W. J., C. L. de Ligny, andH. A. Blijleven, Rec. Trav. Chim.86, 852 (1967).

    Article  CAS  Google Scholar 

  29. Matijević, E. andL. J. Stryker, J. Colloid Interface Sci.22, 68 (1966).

    Article  Google Scholar 

  30. Matijević, E., in: Principles and Applications of Water Chemistry, EditorsS. D. Faust andJ. V. Hunter, pp. 328–369 (New York 1967).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the NSF Grant GP12220.

Part of a Ph. D. thesis byR. V. Lauzon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauzon, R.V., Matijević, E. The stability of silver iodide sols in methanol-water media in the presence of HfCl4 . Kolloid-Z.u.Z.Polymere 250, 605–612 (1972). https://doi.org/10.1007/BF01501472

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01501472

Keywords

Navigation