Skip to main content
Log in

Theory relating lifetimes statistics to molecular processes, in the fatigue fracture of fibrous polymers

  • Originalarbeiten
  • Polymere
  • Published:
Kolloid-Zeitschrift und Zeitschrift für Polymere Aims and scope Submit manuscript

Summary

In fatigue of fibers, extreme value approaches do not always offer an adequate interpretation of the scatter encountered in observed lifetimes. Assuming that a considerable part of the scatter is associated with rate-controlling random processes involved in the initiation of brittle fracture, then the lifetime distribution can be derived from the expression for the rate of brittle fracture in oriented polymers. Shifts and changes in these distributions, resulting from changes in fatiguing conditions, are shown to be in agreement with experiment provided that the structural changes induced by mechanical action are taken into consideration.

Zusammenfassung

Bei Ermüdung von Fasern gestattet die Näherung für Extremwerte nicht immer eine adäquate Interpretation der Streuung in den beobachteten Lebenszeiten. Mit der Annahme, daß ein beträchtlicher Teil der Streuung mit geschwindigkeitsbedingten Zufallsprozessen, die in der Initiierung des Sprödigkeitsbruches eine Rolle spielen, verknüpft sind, kann die Lebenszeitverteilung aus dem Ausdruck für die Geschwindigkeit des Sprödbruches in orientierten Polymeren abgeleitet werden. Verschiebungen und Änderungen dieser Verteilungen, wie sie aus Änderungen in den Ermüdungsbedingungen folgen, lassen sich in Übereinstimmung mit dem Experiment darstellen, vorausgesetzt, daß die durch mechanische Wirkung induzierten Strukturänderungen in Betracht gezogen werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

parameter, in number of cycles, associated with duration of healing process.

D :

cumulative damage; the specimen fails whenD=1

E :

Young's modulus

ΔF * :

activation energy associated with the separation of polymer segments

K :

normalizing factor

N :

number of cycles

N 0,N0 :

parameters, in number of cycles, reflecting the duration of an initiation period when no damage is caused by fatiguing

N v :

expected lifetime

N′ v :

parameter, in number of cycles, associated with the increase in stress concentration during fatiguing

R c :

rate of failure

R N :

rate of crack growth per cycle

T :

absolute temperature

V :

volume of the specimen

Z :

concentration of nucleation sites

a :

dimensionless parameter related to the rate of decrease in stress concentration associated with a preexisting defect

b :

ratio of static stress to the superimposed cyclic stress amplitude

Δf r :

free energy associated with the formation of a crack of radiusr

h :

Planck's constant

k :

Boltzmann constant

\(\hat k\) :

dimensionless parameter associated with the rate of cumulative damage

k′:

dimensionless parameter associated with the rate of increase in stress concentration

l :

average distance between polymer chains in direction perpendicular to the fiber axis

r :

radius of a crack

r * :

critical radius of a crack

q :

stress concentration factor

qd 0 :

stress concentration factor associated with the preexisting defect

q′:

same as qd0 at the end of healing process

q f :

stress concentration factor associated with fatigue induced defects

v :

effective volume of the vacancy created by the separation of two polymer chain segments

ɛ 0 :

cyclic strain amplitude

ɛ s :

static strain

ν :

frequency

ϱ :

specific fracture surface energy

σ 0 :

cyclic stress amplitude

σ * :

critical local stress

Literature

  1. Freudenthal, A. M. andE. J. Gumbel, J. Amer. Statist. Assoc.49, 575 (1959).

    Google Scholar 

  2. Prevorsek, D. C., W. J. Lyons, andJ. C. Whitwell, Textile Research J.33, 963 (1963).

    Google Scholar 

  3. Gumbel, E. J., Statistics of Extremes (New York 1958).

  4. Griffith, A. A., Phil. Trans.221, 163 (1921).

    Google Scholar 

  5. Epstein, B., J. Appl. Phys.19, 140 (1948).

    Google Scholar 

  6. Eyring, H., J. W. Frederickson, andD. McLachlan, Proc. Nat. Acad. Sci., Washington34, 298 (1948).

    Google Scholar 

  7. Freudenthal, A. M., Proc. Roy. Soc.A 187, 416 (1946).

    Google Scholar 

  8. Tobolsky, A. andH. Eyring, J. Chem. Phys.11, 125 (1943).

    Google Scholar 

  9. Coleman, B. D., J. Polymer Sci.20, 447 (1956).

    Google Scholar 

  10. Coleman, B. D., Trans. Soc. Rheol.1, 153 (1957).

    Google Scholar 

  11. Bueche, F., J. Appl. Phys.28, 784 (1957).

    Google Scholar 

  12. Fisher, J. C., J. Appl. Phys.19, 1062 (1948).

    Google Scholar 

  13. Yokobori, T., J. Phys. Soc. Japan10, 368 (1955).

    Google Scholar 

  14. Yokobori, T. andOhara, J. Phys. Soc., Japan13, 305 (1958).

    Google Scholar 

  15. Yokobori, T., Kolloid-Z.166, 20 (1959).

    Google Scholar 

  16. Weibull, W., Fatigue Testing and Analysis of Results (Oxford 1961).

  17. Prevorsek, D. C. andW. J. Lyons, Paper presented at Textile Research Institute, 33rd Annual Meeting, New York City, March (1963).

  18. Moseley, W. W., J. Appl. Pol. Sci.7, 187 (1963).

    Google Scholar 

  19. Prevorsek, D. C. andW. J. Lyons, J. Appl. Phys.35, 3152 (1964).

    Google Scholar 

  20. Freudenthal, A. M., J. Appl. Phys.31, 2196 (1960).

    Google Scholar 

  21. Watson, G. S. andW. T. Wells, Technometrics3, 281 (1961).

    Google Scholar 

  22. Cumberbirch, B. J. E., J. Dlugosz, andJ. E. Ford, J. Textile Inst.52, T 513 (1961).

    Google Scholar 

  23. Ford, J. E., J. Textile Inst.54, T 484 (1963).

    Google Scholar 

  24. Freudenthal, A. M., Proc. IVTAM Colloquium on Fatigue Stockholm (Berlin-Göttingen-Heidelberg 1955).

  25. Lyons, W. J., Textile Research J.32, 448 (1962).

    Google Scholar 

  26. Weibull, W., Acta Metallurgica11, 745 (1963).

    Google Scholar 

  27. Freudenthal, A. M. andE. J. Gumbel, J. Amer. Statist. Assoc.,49, 575 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work done in a project sponsored by a group of member companies of Textile Research Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prevorsek, D.C., Withwell, J.C. Theory relating lifetimes statistics to molecular processes, in the fatigue fracture of fibrous polymers. Kolloid-Z.u.Z.Polymere 201, 27–38 (1965). https://doi.org/10.1007/BF01497076

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01497076

Keywords

Navigation