Skip to main content
Log in

Rigorous QCD-potential for the\(t\bar t\)-system at threshold

  • Theoretical Physics
  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

Recent evidence for the top mass in the region of 160 GeV for the first time provides an opportunity to use the full power of relativistic quantum field theoretical methods, available also for weakly bound systems. Because of the large decay width Γ of the top quark individual energy-levels in “toponium” will be unobservable. However, the potential for the\(t\bar t\) system, based on a systematic expansion in powers of the strong coupling constant α s can be rigorously derived from QCD and plays a central role in the threshold region. It is essential that the neglect of nonperturbative (confining) effects is fully justified here for the first time to a large accuracy, also justbecause of the large Γ. The different contributions to that potential are computed from real level corrections near the bound state poles of the\(t\bar t\)-system which for Γ≠0 move into the unphysical sheet of the complex energy plane. Thus, in order to obtain the different contributions to that potential we may use the level corrections at that (complex) pole. Within the relevant level shifts we especially emphasize the corrections of orderO 4 s m t ) and numerically comparable ones to that order also from electroweak interactions which may become important as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.E. Salpeter, H.A. Bethe: Phys. Rev. 84 (1951) 1232; M. Gell-Mann, F.E. Low: Phys. Rev. 84 (1951) 350

    Google Scholar 

  2. G. Lepage: Phys. Rev. A16 (1977) 863; W Kummer: Nucl. Phys. B179 (1981) 365

    Google Scholar 

  3. F.L. Feinberg: Phys. Rev. D17 (1978) 2659

    Google Scholar 

  4. R. Barbieri, E. Remiddi: Nucl. Phys. B141 (1978) 413; W.E. Caswell, G.P. Lepage: Phys. Rev. A 18 (1978) 810.

    Google Scholar 

  5. G.T. Bodwin, D.R. Yennie and M. Gregorio: Rev. Mod. Phys. 57 (1985) 723; W.E Caswell, G.P. Lepage: Phys. Lett. B167 (1986) 437

    Google Scholar 

  6. S. Love: Ann. Phys. (N.Y.), 113 (1978) 153

    Google Scholar 

  7. For recent reviews see: J.H. Kühn, P.W. Zerwas: Phys. Rep. 167 (1988) 321; W. Lucha, F.F. Schöberl, D. Gromes, Phys. Rep. 200 (1991) 127

    Google Scholar 

  8. P.J. Franzini: Phys. Lett. B296 (1992) 199, 195

    Google Scholar 

  9. T. Appelquist, M. Dine, I.J. Muzinich: Phys. Lett. B69 (1977) 231; W. Fischler, Nucl. Phys. B129 (1977) 157; I.J. Muzinich and F.E. Paige, Phys. Rev. D21 (1980) 1151

    Google Scholar 

  10. S.N. Gupta and F. Redford: Phys. Rev. D24 (1981) 2309, 25 (1982) 3430; S.N. Gupta, F. Redford, W.W. Repko: Phys. Rev. D26 (1982) 3305 J. Pantaleone, S.-H. H. Tye, Y.J. Ng: Phys. Rev. D33 (1986) 777; F. Halzen et al.: Phys. Rev. D47 (1993) 3013.

    Google Scholar 

  11. “Quarkonia” ed. W. Buchmüller, Current Physics-Sources and Comments, Vol. 9, North Holland, 1992

  12. Actually a few papers exist which are careful to argue for a closer relation with reliable QCD perturbation theory; see e.g. W. Buchmüller, Y.J. Ng and S.-H.H. Tye Phys. Rev. D24 (1981) 3003 S. Titard and J. Ynduráin “Rigorous QCD evaluation of spectrum and ground state properties of heavy\(q\bar q\) Systems”, UM-TH 93-25 and FTUAM 94-6.

    Google Scholar 

  13. W. Kummer, G. Wirthumer: Nucl. Phys. B185 (1981) 41

    Google Scholar 

  14. R. Barbieri, G. Curci, E. d'Emilio, E. Remiddi: Nucl. Phys. B154 (1979) 535; R. Barbieri, M. Caffo, R. Gatto, E. Remiddi: Phys. Lett. B95 (1980) 93; K. Hagiwara, C.B. Kim, T. Yoshino: Nucl. Phys. B177 (1981) 461

    Google Scholar 

  15. M. Jeżabek: “Top quark physics”, Karlsruhe prep. TTP94-09

  16. H. Leutwyler: Phys. Lett. B98 (1981) 447

    Google Scholar 

  17. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov: Nucl. Phys. B147 (1978) 385, 448

    Google Scholar 

  18. W. Kummer and G. Wirthumer: Phys. Lett. B150 (1985), 392; W. Kummer, G. Wirthumer and H. Leutwyler: Lett. al Nuovo Cim. 42 (1985), 187

    Google Scholar 

  19. V.S. Fadin and O.I. Yakolev: [Yad. Fiz. 53 (1991) 1111], Sov. J. Nucl. Phys. 53 (1991) 688

    Google Scholar 

  20. CDF Collaboration (F. Abe, et al.), Phys. Rev. Lett. 73 (1994) 225; Phys. Rev. D50 (1994) 2966

    Google Scholar 

  21. ALEPH,DELPHI,L3, OPAL, Phys. Lett. B276 (1992) 247; J. Ellis, G.L. Fogli and E.Lisi, “The top quark and Higgs boson masses in the standard model and the MSSM” CERN-TH-7261-94 (May 1994)

    Google Scholar 

  22. J.H. Kühn, ‘The toponium scenario’ Karlsruhe preprint TTP92-40; M. Jeżabek, J.H. Kühn, ‘The top width’, Karlsruhe preprint TTP 93-4

  23. V.S. Fadin, V.A. Khoze: Sov. J. Nucl. Phys. 48 (1988) 309

    Google Scholar 

  24. M.J. Strassler and M.E. Peskin: Phys. Rev. D43 (1991) 1500

    Google Scholar 

  25. Y. Sumino, K. Fujii, H. Hagiwara, H. Murayama, C.-K. Ng: Phys. Rev. D47 (1993) 56

    Google Scholar 

  26. M. Veltman: Physica 29 (1963) 186

    Google Scholar 

  27. A. Duncan: Phys. Rev. D13 (1976) 2866

    Google Scholar 

  28. J. Schwinger: Phys. Rev. 127, (1962) 324; N.H. Christ, T.D. Lee: Phys. Rev. 22 (1980) 939

    Google Scholar 

  29. W. Mödritsch, W. Kummer: Nucl. Phys. B430 (1994) 3

    Google Scholar 

  30. G. Tiktopoulos: Journ. Math. Phys. 6 (1965) 573; W. Kummer: Nucl. Phys. B179 (1981) 365

    Google Scholar 

  31. S. Mandelstam: Proc. Roy. Soc. A233 (1955) 248; D. Lurié, A.J. Macfarlane, Y. Takahashi: Phys. Rev. 140 (1965) B 1091

    Google Scholar 

  32. G. Wirthumer, PhD thesis, TU-Wien 1984

  33. W. Buchmüller, E. Remiddi: Nucl. Phys. B162 (1980) 250

    Google Scholar 

  34. J. Malenfant: Phys. Rev. D35 (1987) 1525

    Google Scholar 

  35. L.D. Landau, E.M. Lifschitz: ‘Lehrbuch der Theoretischen Physik Bd.IV, Quantenelektrodynamik’, Akademie Verlag Berlin 1986

    Google Scholar 

  36. K. Hagiwara, S. Jacobs, M.G. Olsson, K.J. Miller: Phys. Lett. 130B (1983) 209, K. Hagiwara, A.D. Martin, A.W. Peacock: Z. Phys. C33 (1986) 135

    Google Scholar 

  37. I.S. Gradstein und I.M. Ryshik: ‘Summen, Produkt und Integraltafeln’, Harri Deutsch. Thun 1981

    Google Scholar 

  38. T. Fulton, P. Martin: Phys. Rev. 95 (1954) 811

    Google Scholar 

  39. T. Muta: ‘Foundations of quantum chromodynamics’, World Scientific Lecture Notes in Physics, Vol.5 (1986)

  40. D.R.T. Jones: Nucl. Phys. B75 (1974) 531; W.E. Caswell: Phys. Rev. Lett. 33 (1974) 244

    Google Scholar 

  41. W. Mödritsch, A. Vairo: in preparation

  42. P. Jain et al., Phys. Rev. D46 (1992) 4029 and references therein

    Google Scholar 

  43. I.M. Gel'fand, G.E. Shilov: Generalized functions' Vol. 1, Academic Press Inc., New York 1964

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is supported in part by the Austrian Science Foundation (FWF) in project P10063-PHY within the framework of the EEC-Program “Human Capital and Mobility”, Network “Physics at High Energy Colliders”, contract CHRX-CT93-0357 (DG 12 COMA)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kummer, W., Mödritsch, W. Rigorous QCD-potential for the\(t\bar t\)-system at threshold. Z. Phys. C - Particles and Fields 66, 225–239 (1995). https://doi.org/10.1007/BF01496596

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01496596

Keywords

Navigation