Skip to main content
Log in

Phase separation and phase inversion of polyurethane networks

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of polyurethane networks were prepared from MDI (4,41-diphenyl methane diisocyanate), ethylene glycol and a polyoxyethylene-tipped polyoxypropylene triol. The phase separation and phase inversion phenomena of these polyurethane networks were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and measurement of their tensile properties. The DSC and DMA data indicate that the segmented copolyurethanes possess a two-phase morphology comprising soft and hard segments. It can be found from DSC data that the polyether soft segments exhibit a Tg (glass transition temperature) of −60 °C, and the aromatic hard segments display a Tg of about 128 °C. Two Tgs corresponding to the comprised segments can also be found by DMA for some segmented polyurethanes. Varying the content of aromatic hard segments over the range from 0 to 80 wt% changes the material behavior from a soft rubber through a highly extensible elastomer to a brittle semi-ductile glassy material. Based on the property-composition plots, phase inversion appears to occur at a hard segment content of about 50 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. C. Van Bogart, A. Lilanonitkul and S. L. Cooper,Multiphase Polymers (Ed. S. L. Cooper), ACS, New York, 1979, p. 1.

    Google Scholar 

  2. R. J. Zdrahala, S. L. Hager, R. M. Gerkin and F. E. Critchfield,J. Elast. Plast.,12, 225 (1980).

    Google Scholar 

  3. S. Abouzahr, G. L. Wikes and Z. Ophir,Polymer,23, 1077 (1982).

    Google Scholar 

  4. N. Barksby, D. Dunn, A. Kaye, J. L. Stanford and R. F. T. Stepto,Reaction Injection Moulding (Ed. J. E. Kresta), ACS, 1985, New York, p. 85.

    Google Scholar 

  5. A. J. Ryan, C. W. Macosko and W. Bras,Macromolecules,25, 6277 (1992).

    Google Scholar 

  6. W. Hu and J. T. Koberstein,J. Polym. Sci., Polym. Phys.,32, 437 (1994).

    Google Scholar 

  7. R. M. Brider and E. L. Thomas,J. Macromol. Sci. Phys.,B22, 553 (1983).

    Google Scholar 

  8. G. Oertel,Polyurethane Handbook, Hanser Publishers, New York, 1985.

    Google Scholar 

  9. W. R. Sorenson and T. W. Campbell,Preparative Methods of Polymer Chemistry, Interscience Publishers, New York, 1961.

    Google Scholar 

  10. J. M. G. Cowie,Polymers: Chemistry and Physics of Modern Materials, Intertext Book, London, 1973.

    Google Scholar 

  11. D. J. David and H. B. Staley,Analytical Chemistry of Polyurethanes, Vol.XVI, Part 3, Wiley-Interscience, New York, 1965.

    Google Scholar 

  12. R. S. Seymour and S. L. Cooper,Macromolecules,6, 48 (1973).

    Google Scholar 

  13. S. Abouzahr, G. L. Wilkes and Z. Ophir,Polymer,23, 1077 (1982).

    Google Scholar 

  14. R. J. Zdrahala, R. M. Gerkin, S. L. Hager and F. E. Critchfield,J. Appl. Polym. Sci.,24, 2041 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, DK., Tsai, HB. & Standford, J.L. Phase separation and phase inversion of polyurethane networks. J Polym Res 3, 159–163 (1996). https://doi.org/10.1007/BF01494525

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01494525

Keywords

Navigation