Skip to main content
Log in

Phase separation kinetics and morphology in a polymer blend with diblock copolymer additive

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The phase diagram for a low molecular weight blend of deuterated polystyrene (PSD) and polybutadiene (PB) was determined by temperature jump light scattering (TJLS) measurements and phase contrast optical microscopy (PCOM). The PSD/PB blend exhibited upper critical solution temperature behavior, and the critical temperatures measured by these two techniques were consistent. Upon addition of 0 to 0.12 mass fraction of a comparable molecular weight PSD-PB symmetric diblock copolymer, a linear decrease in the phase transition temperature was observed with increasing diblock copolymer content. At a constant, shallow quench depth, the kinetics of phase separation via spinodal decomposition as measured by TJLS were greatly retarded by the presence of the copolymer. Additionally, the time dependence of the concentration fluctuation growth did not seem to follow a universal functional form anywhere in the accessible q range when the diblock was present. The results of morphology study of the blends in the late stage of phase separation by PCOM also indicated that the phase separated domain sizes did not grow to the same size for a given annealing time as diblock content increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Notes

  1. D. R. Paul,Polymer Blends, D. R. Paul, S. Newman, Eds.; Academic Press: New York, 1978; Vol. 2, Chapter 12.

    Google Scholar 

  2. D. J. Walsh, J. S. Higgins and A. Maconnachie,Polymer Blends and Mixtures, NATO Advanced Study Institute on Polymer Blends and Mixtures, Martinus Nijhoff, Dordrecht, 1985.

    Google Scholar 

  3. L. A. Utracki,Polymer Alloys and Blends: Thermodynamics and Rheology, Hanser, NY, 1989.

    Google Scholar 

  4. B. M. Culberston,Contemporary Topics in Polymer Science, Vol. 6, Multiphase Macromolecules Systems, Plenum, NY, 1989.

    Google Scholar 

  5. R.-J. Roe and D. Rigby,Adv. Polym. Sci.,82, 103 (1987).

    Google Scholar 

  6. P. Marie, J. Selb, A. Rameau, R. Duplessix, Y. Gallot, in Ref. 2; J. Selb, P. Marie, A. Rameau, R. Duplessix and Y. Gallot,Polym. Bull. (Berlin),10, 444 (1983).

    Google Scholar 

  7. D. Rigby, J. L. Lin and R.-J. Roe,Macromolecules,18, 2269 (1985).

    Google Scholar 

  8. R.-J. Roe and C. M. Kuo,Macromolecules,23, 4635 (1990).

    Google Scholar 

  9. D. W. Park and R.-J. Roe,Macromolecules,24, 5324 (1991).

    Google Scholar 

  10. S. Y. Hobbs, M. E. J. Dekkers and V. H. Watkins,Polymer,29, 1599 (1988).

    Google Scholar 

  11. S. Thomas and R. E. Prud'homme,Polymer,33, 4259 (1992).

    Google Scholar 

  12. U. Sundararaj and C. W. Macosko,Macromolecules,28, 2647 (1995).

    Google Scholar 

  13. L. N. Andradi and G. P. Hellman,Polym. Eng. Sci.,35(8), 693 (1995).

    Google Scholar 

  14. A. Adedeji, A. M. Jamieson and S. D. Hudson,Macromolecules,27, 4018 (1994).

    Google Scholar 

  15. T. Inoue, T. Shoen, T. Hashimoto and H. Kawai,Macromolecules,3, 87 (1970).

    Google Scholar 

  16. B. Löwenhaupt and G. P. Hellmann,Colloid and Polymer Sci.,272, 121 (1994).

    Google Scholar 

  17. B. Löwenhaupt and G. P. Hellmann,Colloid and Polymer Sci.,268, 885 (1990).

    Google Scholar 

  18. J. Tao, M. Okada, T. Nose and T. Chiba,Polymer,36, 3909 (1995).

    Google Scholar 

  19. M. Okamoto, K. Shiomi and T. Inoue,Polymer,36, 87 (1995).

    Google Scholar 

  20. H. Hashimoto, M. Fujimura, T. Hashimoto and H. Kawai,Macromolecules,14, 844 (1981).

    Google Scholar 

  21. R. Fayt, R. Jerome and Ph. Teyssie,J. Polym. Lett. Ed.,24, 25 (1986).

    Google Scholar 

  22. L. Leibler,Macromolecules,15, 1283 (1982).

    Google Scholar 

  23. J. Noolandi and K. M. Hong,Macromolecules,15, 482 (1982);Macromolecules,17, 1531 (1984).

    Google Scholar 

  24. M. D. Whitmore and J. Noolandi,Macromolecules,18, 657 (1985).

    Google Scholar 

  25. S. H. Anastasiadis, I. Gancarz and J. T. Koberstein,Macromolecules,21, 2980, (1988);Macromolecules,22, 1449 (1989).

    Google Scholar 

  26. According to ISO 31-8, the term “Molecular Weight” has been replaced by “Relative Molecular Mass”, symbol Mr. Thus, if this nomenclature and notation were to be followed in this publication, one would write Mr.n instead of the historically conventional Mn for the number average molecular weight, with similar changes for Mw, Mz and Mv, and it would be called the “Number Average Relative Molecular Mass”. The conventional notation, rather than ISO notation, has been employed for this publication.

  27. P. Gaillard, M. Ossenbach-Sauter and G. Riess,Makromol. Chem. Rapid Commun.,1, 771 (1980).

    Google Scholar 

  28. T. Hashimoto, T. Izumitani,Macromolecules,26, 3631 (1993); T. Izumitani and T. Hashimoto,Macromolecules,27, 1744 (1994).

    Google Scholar 

  29. C. C. Lin, H. S. Jeon, N. P. Balsara and B. Hammouda,J. Chem. Phys.,103, 1957 (1995).

    Google Scholar 

  30. L. Sung and C. C. Han,J. Polym. Sci.,33, 2405 (1995).

    Google Scholar 

  31. T. Kawakatsu, K. Kawasaki, Phys. A167, 690 (1990); T. Kawakatsu, K. Kawasaki, M. Furusaka, H. Okabayashi and T. Kaneya,J. Chem. Phys.,99, 8200 (1993).

  32. L. Sung and C. C. Han,to be published.

  33. All commercial equipment, instruments, or materials are identified in this article in order to adequately specify the experimental procedure, such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology; nor does it imply that materials or equipment identified are necessarily the best available for the purpose.

  34. M. He, Y. Liu, Y. Feng, M. Jiang and C. C. Han,Macromolecules,24, 464 (1991).

    Google Scholar 

  35. T. Sato and C. C. Han,J. Chem. Phys.,88, 2057 (1988).

    Google Scholar 

  36. B. Endres, R. W. Garbella, J. H. Wendorff,Coll. Polym. Sci.,263, 361 (1985).

    Google Scholar 

  37. R. M. Briber and F. Khoury,Polymer,28, 38 (1987).

    Google Scholar 

  38. “Polymer Handbook”, 3rd Ed., J. Brandrup and E. H. Immergut. Eds., Wiley-Interscience. 1989.

  39. All ± values cited within are estimated uncertainties based on multiple prior measurements with equipment utilized.

  40. D. W. Hair, E. K. Hobbie, J. F. Douglas and C. C. Han,Phys. Rev. Lett.,68, 2476 (1992).

    PubMed  Google Scholar 

  41. J. W. Cahn and J. E. Hillard,J. Chem. Phys.,31, 688 (1959); J. W. Cahn,ibid.,42, 93 (1965).

    Google Scholar 

  42. H. E. Cook,Acta Metall.,18, 297 (1970).

    Google Scholar 

  43. H. Jinnai, H. Hasegawa and T. Hashimoto,J. Chem. Phys.,99, 4845 (1993).

    Google Scholar 

  44. Detailed discussions of the exponents α and β can be found in Chapter 2 in Ref. 3 and T. Hashimoto, M. Itakura and N. Shimidzu,J. Chem. Phys.,85, 6773 (1985); H. L. Snyder, P. Meakin,J. Polym. Sci.: Polym. Symposium,73, 217 (1985).

    Google Scholar 

  45. H. L. Snyder, P. Meakin,J. Chem. Phys.,79, 5588 (1983);J. Chem. Phys.,78, 3334, (1984); H. L. Snyder, P. Meakin and S. Reich andMacromolecules,16, 775 (1983).

    Google Scholar 

  46. C. L. Jackson, L.Sung and C. C. Han,submitted to Polym. Eng. Sci. (1996).

  47. J. Dudowicz, K. F. Freed and J. F. Douglas,Macromolecules,28, 2276 (1995).

    Google Scholar 

  48. I. M Lifzhitz, V. V. Slyozov,J. Phys. Chem. Solids,19, 35 (1961); A. Z. Akcasu and R. Klein,Macromolecules,26, 1429 (1993); A. J. Bray,Adv. Phys.,43, 357 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sung, L., Hess, D.B., Jackson, C.L. et al. Phase separation kinetics and morphology in a polymer blend with diblock copolymer additive. J Polym Res 3, 139–150 (1996). https://doi.org/10.1007/BF01494523

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01494523

Keywords

Navigation