Skip to main content
Log in

Solute transport in poly(2-hydroxyethyl methacrylate) hydrogel membranes

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The swelling, permeation, and release characteristics for benzoic acid, caffeine, propranolol hydrochloride, and diclofenac sodium in crosslinked poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels were examined. Increasing polymer crosslinking density resulted in decreases in the degree of swelling, drug loading, the diffusivity of solute in the hydrogels, and in the rate of drug release. Diclofenac sodium led to an abnormally large degree of swelling as the maximum value is given as 6.5, while the highest for the other three was 1.07. That the logarithmic drug diffusivity was proportional to the reciprocal of hydration indicates that the free volume theory accounts for the transport of solute in the gels. Increasing the concentration resulted in increases in the diffusivities, solubilities, and permeabilities of the solutes in the hydrogels. The drug release kinetics from most wet hydrogel samples can be well-fitted by a Fickian diffusion model. Near zero-order release is observed only for dry samples with caffeine of low loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Gehrke and P. I. Lee, in P. Tyle, Ed.,Specialised Drug Delivery Systems, Marcel Dekker, New York, 333–392, 1990.

    Google Scholar 

  2. E. H. Schacht, in J. M. Anderson and S. W. Kim, Eds.,Recent Advances in Drug Delivery Systems, Plenum Press, New York, 259–278, 1984.

    Google Scholar 

  3. B. D. Ratner and A. S. Hoffman, in J. D. Andrade, Ed.,Hydrogels for Medical and Related Applications, ACS Symp. Ser. No.31, American Chemical Society, Washington, DC,1–36, 1976.

    Google Scholar 

  4. N. A. Peppas, Ed.,Hydrogels in Medicine and Pharmacy, Vols.I–III, CRC Press, Boca Raton, FL, 1986-7.

    Google Scholar 

  5. R. W. Korsmeyer and N. A. Pappas, in T. J. Roseman and S. Z. Mansdorf, Eds.,Controlled Release Delivery Systems, Marcel Dekker, New York, 77–90, 1983.

    Google Scholar 

  6. P. I. Lee,J. Controll. Release,2, 277 (1985),

    Google Scholar 

  7. N. A. Pappas, H. J. Moynihan and L. M. Lucht,J. Biomed. Mater. Res.,19, 397 (1985).

    Google Scholar 

  8. N. A. Peppas and B. D. Barr-Howell, in N. A. Peppas, Ed.,Hydrogels in Medicine and Pharmacy, Vols. I. CRC Press, Boca Raton, FL, 27–56, 1986.

    Google Scholar 

  9. J. Crank,The Mathematics of Diffusion, Oxford University Press, London, 1975.

    Google Scholar 

  10. J. Crank and G. S. Park, Eds.,Diffusion in Polymers, Academic Press, New York, 1968.

    Google Scholar 

  11. C. E. Rogers, in D. Fox, M. M. Labes and A. Weissberger, Eds.,Physical and Chemistry of the Organic Solid State, Vol II, Interscience, New York, 509–635, 1965.

    Google Scholar 

  12. J.-N. Chang,Diffusion and Release of Drugs in PHEMA Hydrogels, MS Thesis. Yuan-Ze Inst. Tech., Taiwan. R.O.C., 1992.

    Google Scholar 

  13. K. A. Smith, C. K. Colton, E. W. Merrill and L. B. Evans,Chem. Eng. Progr. Symp. Ser.,64, 45 (1968).

    Google Scholar 

  14. C. K. Colton,Permeability and Transport Studies in Batch and Flow Dialyzers with Applications to Hemodialysis, Ph.D. Dissertation, M. I. T., Mass., U.S.A., 1969.

    Google Scholar 

  15. K. Tojo, Y. Sun, M. M. Ghannam and Y. W. Chien,AIChE J.,31, 741 (1985).

    Google Scholar 

  16. K. Tojo, J. A. Masi and Y. W. Chien,Ind. Eng. Chem. Fund.,24, 368 (1985).

    Google Scholar 

  17. J.-L. Lin. J.-W. Huang and Y.-M. Sun,Proc. Symp. Transport Phenomena and Applications, Taipei, R.O.C., 59 (1992).

  18. D. E. Gregonis, C. M. Chen and J. D. Andrade, in J. D. Andrade, Ed.,Hydrogels for Medical and Related Applications, ACS Symp. Ser. No.31, American Chemical Society, Washington, DC, 88–104, 1976.

    Google Scholar 

  19. W. E. Roorda, J. A. Bouwstra, M. A. de Vries and H. E. Junginger,Pharm. Res.,5, 722 (1988)

    Google Scholar 

  20. H. Stutz, K.-H. Illers and J. Mertes,J. Polyms, Sci., Polym. Phys. Ed.,28, 1483 (1990).

    Google Scholar 

  21. H. Yasuda, C. E. Lamaze and L. D. Ikenberry,Markomol. Chem.,118, 19 (1968).

    Google Scholar 

  22. H. Yasuda, L. D. Ikenberry and C. E. Lamaze,Markomol. Chem.,125, 108 (1969).

    Google Scholar 

  23. L. Yean, C. Bunel and J.-P. Vairon,Markomol. Chem.,191, 1119 (1990).

    Google Scholar 

  24. R. W. Baker and H. K. Lonsdale, in A. C. Tanquary and R. E. Lacey, Eds.,Controlled Release of Biologically Active Agents, Plenum Press, New York, 15–71, 1974.

    Google Scholar 

  25. W. R. Good, in R. Kostelnik, Ed.,Polymeric Delivery Systems, Gordon and Breach, New York, 139–153, 1976.

    Google Scholar 

  26. P. I. Lee, in P. I. Lee and W. R. Good, Eds.,Controlled Release Technology: Pharmaceutical Applications, ACS Symp. Ser. No.348, American Chemical Society, Washington, DC, 71–83, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, YM., Chang, JN. Solute transport in poly(2-hydroxyethyl methacrylate) hydrogel membranes. J Polym Res 2, 71–82 (1995). https://doi.org/10.1007/BF01493206

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01493206

Keywords

Navigation