Skip to main content
Log in

Assessment of the antiexudative and antiproliferative activities of non-steroidal anti-inflammatory drugs in inflammatory models developed in rats by subcutaneous implantation of bacterial cell walls from the dental plaque

  • Original Articles
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

A purified bacterial cell walls suspension from human dental plaque were biochemically prepared to serve as flogogenous agent in producing experimental inflammatory models in rats. In the vascular permeability inhibition assay (edemogenic test), the subcutaneous implantation of the flogogenous agent elicited an acute inflammatory reaction highly susceptible to the effects of the non-steroidal anti-inflammatory drugs (NSAIDs). The intradermal injection of the flogogenous agent in the dorsum of rats developed experimental granulomas also susceptible to the anti-inflammatory effects of the NSAIDs. Otherwise, the antimitotic effect of drugs was carried out in the model of cellular proliferation of duodenal mucosa of rats by incorporation of tritiated thymidine (3H TdR) in the DNA. These models of acute and chronic inflammation, and the antimitotic model permitted us to evaluate the anti-inflammatory and antimitotic effects of sulindac, ibuprofen, naproxen and glucametacin. In the antiexudative activity, evaluated by the edemogenic test, naproxen was the more effective drug followed by sulindac, ibuprofen and glucametacin (in a decreasing order of potency) to inhibit the exudative response induced by the bacterial cell walls suspension, in all experimental periods. In the chronic anti-inflammatory activity, evaluated by the granuloma inhibition assay, all drugs were capable to demonstrate effectiveness against the development of the experimental granulomas induced by an intradermal injection of the flogogenous agent. In the model of cellular proliferation, all tested drugs demonstrated antimitotic activity in all experimental periods (4, 6 and 8 days), also. Sulindac induced the higher antimitotic effect, in all experimental periods, followed by ibuprofen, naproxen and glucametacin in a decreasing order of efficacy. There was a positive correlation between the antiexudative, anti-proliferative, and antimitotic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zweifach, B. W. 1965. Microvascular aspects of tissue injury.In The Inflammatory Process. Zweifach, B. W., L. Grant, and R. T. Cluskey, editors. Academic Press, New York. Vol. I, pp. 161–196.

    Google Scholar 

  2. Spector, W. G. 1975. Cellular events in inflammation.In Inflammation and Antiinflammatory Therapy. G. Katona, and J. R. Blengio, editors. Spectrum, New York, pp. 153–156.

    Google Scholar 

  3. Catanzaro Gujmarães, S. A. 1982.In Patologia Básica da Cavidade Bucal. Guanabara Koogan, Rio de Janeiro, pp. 197–220.

    Google Scholar 

  4. Cotran, R. S., Kumar, V. andRobbins, S. L. 1989.In Robbins Pathologic Basis of Disease. W. B. Saunders Co., Philadelphia, 4th ed., pp. 39–86.

    Google Scholar 

  5. Rubin, E. L. andFarber, J. L. 1994.In Pathology, J. B. Lippincott, Philadelphia, 2nd ed., pp. 34–66.

    Google Scholar 

  6. Paulus, H. E. 1974. Some inflammatory diseases in man and their current therapy.In Antiinflammatory Agents. Chemistry and Pharmacology. R. A. Scherrer, and M. W. Whitehouse, editors. Academic Press, London, Vol. 1, pp. 3–26.

    Google Scholar 

  7. Chahade, W. H. 1978. A inflamação e os antiinflamatórios não hormonais.Rev. Bras. Clin. Ter. 7:683–693.

    Google Scholar 

  8. Vane, J. R. 1978. The mode of action of aspirin-like drugs.Agents Actions 8:430–431.

    PubMed  Google Scholar 

  9. Flower, R. J., S. Moncada, andJ. R. Vane. 1980. Analgesic-antipyretics and anti-inflammatory agents; drugs employed in the treatment of gout.In The Pharmacological Basis of Therapeutics. L. S. Goodman, and A. Gilman, editors. MacMillan, New York, 6th ed., pp. 682–728.

    Google Scholar 

  10. Menezes, M. R. D. andS. A. Catanzaro Guimarães, 1985. Determination of anti-inflammatory and antimitotic activities of non-steroid anti-inflammatory drugs ibuprofen, diclofenac sodium and fentiazac.Cell. Mol. Biol. 31:455–461.

    PubMed  Google Scholar 

  11. Akatsu, T. andS. A. Catanzaro Guimarães. 1986. Comparative effects of non-steroidal anti-inflammatory drugs, mefenamic acid, metiazinic acid and glucametacin on the inflammatory response induced by subcutaneous implantation of human dental plaque and on the mitotic activity of isoproterenol-stimulated parotid glands of rats.Cell. Mol. Biol. 32:619–626.

    PubMed  Google Scholar 

  12. Wallinder, I. andH. Y. Neujahr. 1971. Cell wall peptidoglycan from Lactobacillus fermenti.J. Bact. 105:918–926.

    PubMed  Google Scholar 

  13. Hartree, E. F. 1972. Determination of protein: a modification of the Lowry method that gives a linear photometric response.Analyt. Biochem. 48:422–427.

    PubMed  Google Scholar 

  14. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, andF. Smith. 1956. Colorimetric method for determination of sugars and related substances.Analyt. Chem. 28:350–356.

    Google Scholar 

  15. Wilhelm, D. L. andB. Mason. 1960. Vascular permeability changes in inflammation: the role of endogenous permeability factors in mild thermal injury.Brit. J. Exp. Path. 41:487–506.

    PubMed  Google Scholar 

  16. Movat, H. Z., N. L. Dilorenzo, andN. S. Taichman. 1967. Supression by antihistamine of passive cutaneous anaphylaxis produced with anaphylactic antibody in the guinea-pig.J. Immunol. 98:230–235.

    PubMed  Google Scholar 

  17. Udaka, K., Y. Takeuchi, andH. Z. Movat. 1970. Simple method for quantitation of enhanced vascular permeability.Proc. Soc. Exp. Biol. (N.Y.)133:1384–1387.

    Google Scholar 

  18. Swingle, K. F. andF. E. Shideman. 1972. Phases of inflammatory responses to sub-cutaneous implantation of a cotton pellet and their modification by certain anti-inflammatory agents.J. Pharmacol. Exp. Ther. 183:226–234.

    PubMed  Google Scholar 

  19. Aherne, W. 1967. Methods of counting discrete tissue components in microscopical sections.J. Roy. Micr. Soc. 87:493–508.

    PubMed  Google Scholar 

  20. Chalkley, H. W. 1943. A method for quantitative morphologic analysis of tissue.J. Nat. Cancer Inst. 4:47–53.

    Google Scholar 

  21. Catanzaro Guimarães, S. A. 1968. Histometric determination of collagen fibers in granulating wounds of alloxan diabetic rats.Experientia (Basel)24:1168–1169.

    Google Scholar 

  22. Scott, J. F., A. P. Fraccastoro, andE. B. Taft. 1956. Studies on histochemistry. I. Determination of nucleic acids in microgram amounts of tissue.J. Histochem. Cytochem. 4:1- 10.

    PubMed  Google Scholar 

  23. Catanzaro Guimarães, S. A. andR. Baserga. 1973. Effect of urethane on isoproterenol-stimulated parotid glands of mice.Lab. Invest. 29:367–373.

    PubMed  Google Scholar 

  24. Swingle, K. F. 1974. Evaluation for antiinflammatory activity.In Anti-inflammatory Agents. Chemistry and Pharmacology. R. A. Scherrer, and M. W. Whitehouse, editors. Academic Press, London, Vol. 2, pp. 33–109.

    Google Scholar 

  25. Taichman, N. S., H. L. Freedman, andT. Uriuhara. 1966. Inflammation and tissue injury. I—The response to intradermal injections of human dento-gingival plaque in normal and leukopenic rabbits.Archs. Oral Biol. 11:1385–1392.

    Google Scholar 

  26. Vinegar, R., W. Schreiber, andR. Hugo. 1969. Biphasic development of carrageenin edema in rats.J. Pharmacol. Exp. Ther. 166:96–103.

    PubMed  Google Scholar 

  27. Vane, J. R. 1971. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs.Nature (Lond.)231:232–235.

    Google Scholar 

  28. Smith, J. B. andA. L. Willis. 1971. Aspirin selectively inhibits prostaglandin production in human platelets.Nature (Lond.)231:235–237.

    Google Scholar 

  29. Ferreira, S. H., S. Moncada, andJ. R. Vane. 1971. Indomethacin and aspirin abolish prostaglandin release from the spleen.Nature (Lond.)231:237–239.

    Google Scholar 

  30. Flower, R. J., R. Gryglewski, andK. Herbaczýnska-Cedro. 1972. Effects of anti-inflammatory drugs on prostaglandin biosynthesis.Nature (Lond.)238:104–106.

    Google Scholar 

  31. Ferreira, S. H. andJ. R. Vane. 1973. New aspects of the mode of action of nonsteroid antiinflammatory drugs.Ann. Rev. Pharmacol. 14:57–71.

    Google Scholar 

  32. Flower, R. J. 1974. Drugs which inhibit prostaglandin biosynthesis.Pharmacol. Rev. 26:37–67.

    Google Scholar 

  33. Vane, J. R., andR. M. Botting. 1990. The mode of action of anti-inflammatory drugs.Postgrad. Med. J. 66 (Suppl. 4): S2-S17.

    Google Scholar 

  34. Brettschneider, I., R. Praus, andJ. Musilová. 1976. Effect of some anti-rheumatics on connective tissue components.Arzneimittel-Forsch. 26:846–848.

    Google Scholar 

  35. Trnavský, K. 1974. Some effects of antiinflammatory drugs on connective tissue metabolism.In Anti-inflammatory Agents. Chemistry and Pharmacology. R. A. Scherrer, and M. W. Whitehouse, editors. Academic Press, London, Vol. 2, pp. 303–324.

    Google Scholar 

  36. Palka, J., andZ. Galewska. 1990. The effect of some antiinflammatory drugs on collagen of rat skin.Pol. J. Pharmacol. 42:39–42.

    Google Scholar 

  37. Baserga, R. 1968. Biochemistry of the cell cycle. A review.Cell. Tiss. Kinet. 1:167–191.

    Google Scholar 

  38. Baserga, R. 1969.In Biochemistry of Cell Division. Charles C. Thomas Publ., Springfield, pp. 3–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catanzaro Guimarães, S.A., Akatsu, T., Tago, E.M. et al. Assessment of the antiexudative and antiproliferative activities of non-steroidal anti-inflammatory drugs in inflammatory models developed in rats by subcutaneous implantation of bacterial cell walls from the dental plaque. Inflammation 20, 623–636 (1996). https://doi.org/10.1007/BF01488800

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01488800

Keywords

Navigation