Skip to main content
Log in

Guinea pig kurloff (NK-like) cells mediate TNF-dependent cytotoxic activity: Analogy with NC effector cells

  • Original Articles
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Kurloff cells are mononuclear cells possessing a large cytoplasmic inclusion body specific to the guinea pig. In this report, we present strong evidence that Kurloff cells can mediate NC activity against tumor cells in addition to their previously reported NK activity. Using an 18 h51Cr-release assay we have shown that Kurloff cells were highly effective in killing the TNF-sensitive WEHI 164 target cell line. Lower but significant cytotoxic activity was also observed after only 4 h. However, our results suggest a different mechanism of lysis in the 4 h and 18 h assay. Lysis of WEHI 164 target cells by Kurloff cells in the 4 h assay could be strongly increased in the presence of TPA alone or in combination with ionomycin whereas ionomycin alone was uneffective. In contrast, stimulation of Kurloff cells for 18 h with ionomycin alone or in combination with TPA could induce the release of TNF-like factor(s) as observed by the TNF bioassay using L-929 TNF-sensitive target cells. Release of TNF-like factor(s) could also be induced by stimulation with WEHI 164 target cells. Supernatants of Kurloff cells stimulated for 18 h with TPA + ionomycin were also highly cytotoxic against WEHI 164 target cells, but not against the TNF-resistant P815 target cell line. Pretreatment of these supernatants with antimurine TNFα antibodies could almost completely inhibit their cytotoxic activity against WEHI 164 target cells. In contrast, supernatants of Kurloff cells stimulated for only 4 h did not show any TNF-like activity against the L-929 target cell line and were not cytotoxic against WEHI 164 target cells even after 18 h. Taken together, these results suggest that Kurloff cells can mediate NC activity against tumor cells in addition to their previously reported NK activity. By using multiple lytic pathways, these cells may play a crucial role in anti-tumor surveillance and defenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Revell, P. A. 1977. The Kurloff cell.Int. Rev. Cytol. 51:275–314.

    Google Scholar 

  2. Ledingham, J. C. G. 1940. Sex hormones and the Foà-Kurloff cell.J. Pathol. Bact. 50:201–219.

    Google Scholar 

  3. Eremin, O., A. B. Wilson, R. R. A. Coombs, J. Ashby, andD. Plumb. 1980. Antibody-dependent cellular cytotoxicity in the guinea pig: the role of the Kurloff cell.Cell. Immunol. 55:312–327.

    Google Scholar 

  4. Debout, C., M. Quillec, andJ. Izard. 1984. Natural killer activity of Kurloff cells: a direct demonstration on purified Kurloff cell suspensions.Cell. Immunol. 87:674–677.

    Google Scholar 

  5. Pouliot, N., K.Maghni, P.Sirois, and M.Rola-Pleszczynski. 1996. Natural killer and lectin-dependent cytotoxic activities of Kurloff cells: target cell selectivity, conjugate formation and Ca++ dependency. Submitted for publication.

  6. Maghni, K., C. Robidoux, J. Laporte, A. Hallée, P. Borgeat, andP. Sirois. 1991. Purification of natural killer-like Kurloff cells and arachidonic acid metabolism.Prostaglandins 42:251–267.

    Google Scholar 

  7. Flick, D. A. andG. E. Gifford. 1984. Comparison of in vitro cell cytotoxic assays for tumor necrosis factor.J. Immunol. Meth. 68:167–175.

    Google Scholar 

  8. Castagna, M., Y. Takai, K. Kaibuchi, K. Sano, U. Kikkawa, andY. Nishizuka. 1982. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters.J. Biol. Chem. 257:7847–7851.

    Google Scholar 

  9. Djeu, J. Y., E. Lanza, S. Pastore, andA. J. Hapel. 1983. Selective growth of natural cytotoxic but not natural killer effector cells in interleukin-3.Nature 306:788–791.

    Google Scholar 

  10. Ortaldo, J. R., L. H. Mason, B. J. Mathieson, S.-M. Liang, D. A. Flick, andR. B. Herberman. 1986. Mediation of mouse natural cytotoxic activity by tumor necrosis factor.Nature 321:700–702.

    Google Scholar 

  11. Wiltrout, R. H., M. J. Brunda, andH. T. Holden. 1982. Variation in selectivity of tumor cell cytolysis by murine macrophages, macrophage-like cell lines and NK cells.Int. J. Cancer 30:335–342.

    Google Scholar 

  12. Wright, S. C., andB. Bonavida. 1982. Studies on the mechanism of natural killer (NK) cell-mediated cytotoxicity (CMC). I. Release of cytotoxic factors specific for NK-sensitive target cells (NKCF) during co-culture of NK effector cells with NK target cells.J. Immunol. 129:433–439.

    Google Scholar 

  13. Bolhuis, R. L. H., R. J. van de Griend, andC. P. M. Ronteltap. 1983/84. Clonal expansion of human B73.1-positive natural killer cells or large granular lymphocytes exerting strong antibody-dependent and -independent cytotoxicity and occasionally lectin-dependent cytotoxicity.Nat. Immun. Cell Growth Regul. 3:61–72.

    Google Scholar 

  14. Pennica, D., G. E. Nedwin, J. S. Hayflick, P. H. Seeburg, R. Derynck, M. A. Palladino, W. J. Kohr, B. B. Aggarwal, andD. V. Goeddel. 1984. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin.Nature 312:724–729.

    Google Scholar 

  15. Knauer, M. F., K. J. Longmuir, R. S. Yamamoto, T. P. Fitzgerald, andG. A. Granger. 1990. Mechanism of human lymphotoxin and tumor necrosis factor induced destruction of cells in vitro: phospholipase activation and deacylation of specific-membrane phospholipids.J. Cell Physiol. 142:469–479.

    Google Scholar 

  16. Carpén, O., I. Virtanen, andE. Saksela. 1981. The cytotoxic activity of human natural killer cells requires an intact secretory apparatus.Cell. Immunol. 58:97–106.

    Google Scholar 

  17. Carpén, O., andE. Saksela. 1988. Directed exocytosis in the NK-cell-mediated cytotoxicity. A review.Nat. Immun. Cell Growth Regul. 7:1–12.

    Google Scholar 

  18. Herberman, R. B., andH. T. Holden. 1978. Natural cell-mediated immunity.Adv. Cancer Res. 27:305–377.

    Google Scholar 

  19. Pucetti, P., A. Santoni, C. Ricardi, andR. B. Herberman. 1980. Cytotoxic effector cells with the characteristics of natural killer cells in the lungs of mice.Int. J. Cancer 25:153–158.

    Google Scholar 

  20. Herberman, R. B., andJ. R. Ortaldo. 1981. Natural killer cells: their role in defenses against disease.Science 214:24–30.

    Google Scholar 

  21. Hanna, N., andR. C. Burton. 1981. Definitive evidence that natural killer (NK) cells inhibit experimental tumor metastasis in vivo.J. Immunol. 127:1754–1758.

    Google Scholar 

  22. Trinchieri, G. 1989. Biology of natural killer cells.Adv. Immunol. 47:187–376.

    Google Scholar 

  23. Timonen, T., J. R. Ortaldo, andR. B. Herberman. 1981. Characteristics of human large granular lymphocytes and relationship to natural killer and K cells.J. Exp. Med. 153:569–582.

    Google Scholar 

  24. Timonen, T., J. R. Ortaldo, andR. B. Herberman. 1982. Analysis by a single cell cytotoxicity assay of natural killer (NK) cell frequencies among human large granular lymphocytes and of the effects of interferon on their activity.J. Immunol. 128:2514–2521.

    Google Scholar 

  25. Neighbour, P. A., H. S. Huberman, andY. Kress. 1982. Human large granular lymphocytes and natural killing: ultrastructural studies of stontium-induced degranulation.Eur. J. Immunol. 12:588–595.

    Google Scholar 

  26. Kiessling, R., E. Klein, andH. Wigzell. 1975. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype.Eur. J. Immunol. 5:112–117.

    Google Scholar 

  27. Herberman, R. G., M. E. Nun, andD. H. Lavrin. 1975. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. I. Distribution of reactivity and specificity.Int. J. Cancer 16:216–229.

    Google Scholar 

  28. Young, J. D.-E., andZ. A. Cohn. 1987. Cellular and humoral mechanisms of cytotoxicity: structural and functional analogies.Adv. Immunol. 41:269–332.

    Google Scholar 

  29. Hiserodt, J. D., L. J. Britvan, andS. R. Targan. 1982. Characterization of the cytolytic reaction mechanism of the human natural killer (NK) lymphocyte: resolution into binding, programming, and killer cell-independent steps.J. Immunol. 129:1782–1787.

    Google Scholar 

  30. Stutman, O., C. J. Paige, andE. Feo Figarella. 1978. Natural cytotoxic cells against solid tumors in mice. I. Strain and age distribution and target cell susceptibility.J. Immunol. 121:1819–1826.

    Google Scholar 

  31. Paige, C. J., E.Feo Fiagarella, M. J.Cuttito, A.Cahan, and O.Stutman. Natural cytotoxic cells against solid tumors in mice. II. Some characteristics of the effector cells.J. Immunol. 121:1827–1835.

  32. Stutman, O., P. Dien, R. E. Wisun, andE. C. Lattime. 1980. Natural cytotoxic cells against solid tumors in mice: blocking of cytotoxicity by D-mannose.Proc. Natl. Acad. Sci. USA 77:2895–2898.

    Google Scholar 

  33. Patek, P. Q., Y. Lin, andJ. L. Collins. 1987. Natural cytotoxic cells and tumor necrosis factor activate similar lytic mechanisms.J. Immunol. 138:1641–1646.

    Google Scholar 

  34. Degliantoni, G., M. Murphy, M. Kobayashi, M. K. Francis, B. Perussia, andG. Trinchieri. 1985. Natural killer (NK) cell-derived hematopoietic colony-inhibiting activity and NIC cytotoxic factor. Relationship with tumor necrosis factor and synergism with immune interferon.J. Exp. Med. 162:1512–1530.

    Google Scholar 

  35. Wright, S. C., andB. Bonavida. 1987. Studies on the mechanism of natural killer cell-mediated cytotoxicity. VII. Functional comparison of human natural killer cytotoxic factors with recombinant lymphotoxin and tumor necrosis factor.J. Immunol. 138:1791–1798.

    Google Scholar 

  36. Cuturi, M. C., M. Murphy, M. P. Costa-Giomi, R. Wienmann, B. Perussia, andG. Trinchieri. 1987. Independent regulation of tumor necrosis factor and lymphotoxin production by human peripheral blood lymphocytes.J. Exp. Med. 165:1581–1594.

    Google Scholar 

  37. Richards, A. L., G. Dennert, D. V. Pluznik, Y. Takagaki, andJ. Y. Dieu. 1989. Natural cytotoxic activity in a cloned natural killer cell line is mediated by tumor necrosis factor.Nat. Immun. Cell Growth Regul. 8:76–88.

    Google Scholar 

  38. Richards, A. L., andJ. Y. Djeu. 1990. Calcium-dependent natural killer and calcium-independent natural cytotoxic activities in an IL-2-dependent killer cell line.J. Immunol. 145:3144–3149.

    Google Scholar 

  39. Hasday, J. D., E. M. Shah, andA. P. Lieberman. 1990. Macrophage tumor necrosis factor-α release is induced by contact with some tumors.J. Immunol. 145:371–379.

    Google Scholar 

  40. Colotta, F., G. Peri, A. Villa, andA. Mantovani. 1984. Rapid killing of actinomycin D-treated tumor cells by human mononuclear cells. I. Effectors belong to the monocyte-macrophage lineage.J. Immunol. 132:936–944.

    Google Scholar 

  41. Dealtry, G. B., M. S. Naylor, W. Fiers, andF. R. Balkwill. 1987. DNA fragmentation and cytotoxicity caused by tumor necrosis factor is enhanced by interferon-γ.Eur. J. Immunol. 17:689–693.

    Google Scholar 

  42. Rubin, B. Y., L. J. Smith, G. R. Hellermann, R. M. Lunn, N. K. Richardson, andS. L. Anderson. 1988. Correlation between the anticellular and DNA fragmenting activities of tumor necrosis factor.Cancer Res. 48:6006–6010.

    Google Scholar 

  43. Ortaldo, J. R., I.Blanca, and R. B.Herberman. 1985. Characteristics of human natural killer cytotoxic factor (NKCF) lysis and possible relationship to lysis by NK cells. InMechanisms of Cytotoxicity by NK Cells, Herberman, R. B., and Callewaert, D. M. (Eds.), Academic Press Inc. p. 335.

  44. Atkinson, E. A., J. M. Gerrard, G. E. Hildes, andA. H. Greenberg. 1990. Studies of the mechanisms of natural killer (NK) degranulation of cytotoxicity.J. Leuk. Biol. 47:39.

    Google Scholar 

  45. Pinkerton, M., andL. K. Steinrauf. 1970. Molecular structure of monovalent metal cation complexes of monensin.J. Mol. Biol. 49:533–546.

    Google Scholar 

  46. Cussler, E. L., D. F. Evans, andS. M. A. Matesich. 1971. Theoritical and experimental basis for a specific countertransport system in membranes.Science 172:377–379.

    Google Scholar 

  47. Pressman, B. C. 1976. Biological applications.Ann. Rev. Biochem. 45:501–530.

    Google Scholar 

  48. Goldfarb, R. H. 1985. Role of proteases in NK activity. InMechanisms of Cytotoxicity by NK Cells, Herberman, R. B., and Callewaert, D. M. (Eds.), Academic Press Inc. pp. 205–212.

  49. Vilcek, J., andT. H. Lee. 1991. Tumor necrosis factor.J. Biol. Chem. 266:7313–7316.

    Google Scholar 

  50. Luettig, B., T. Decker, andM.-L. Lohmann-Matthes. 1989. Evidence for the existence of two forms of membrane tumor necrosis factor: an integral protein and a molecule attached to its receptor.J. Immunol. 143:4034–4038.

    Google Scholar 

  51. Kriegler, M., C. Perez, K. DeFay, I. Albert, andS. D. Lu. 1988. A novel form of TNF/cachectinis a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF.Cell 53:45–53.

    Google Scholar 

  52. Scuderi, P. 1989. Suppression of human leukocyte tumor necrosis factor secretion by the serine protease inhibitor p-toluenesulfonyl-1-arginine methyl ester (tame).J. Immunol. 143:168.

    Google Scholar 

  53. Suffys, P., R. Beyaert, F. Van Roy, andW. Fiers. 1988. Involvement of a serine protease in tumour-necrosis-factor-mediated cytotoxicity.Eur. J. Biochem. 178:257–265.

    Google Scholar 

  54. Perez, C., I. Albert, K. DeFay, N. Zachariades, L. Gooding, andM. Kriegler. 1990. A nonsecretable cell surface mutant of tumor necrosis factor (TNF) kills by cell-to-cell contact.Cell 63:251–258.

    Google Scholar 

  55. Zacharchuk, C. M., B.-E. Drysdale, M. M. Mayer, andH. S. Shin. 1983. Macrophagemediated cytotoxicity: role of a soluble macrophage cytotoxic factor similar to lymphotoxin and tumor necrosis factor.Proc. Natl. Acad. Sci. USA 80:6341–6345.

    Google Scholar 

  56. Tamatani, T., S. Kimura, T. Hashimoto, andK. Onozaki. 1989. Purification of guinea pig tumor necrosis factor (TNF): comparison of its antiproliferative and differentiative activities for myeloid leukemic cell lines with those of recombinant human TNF.J. Biochem. 105:55–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants from the National Cancer Institute and the Medical Research Council of Canada.

Recipient of a studentship from the F.C.A.R.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouliot, N., Maghni, K., Sirois, P. et al. Guinea pig kurloff (NK-like) cells mediate TNF-dependent cytotoxic activity: Analogy with NC effector cells. Inflammation 20, 263–280 (1996). https://doi.org/10.1007/BF01488203

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01488203

Keywords

Navigation