Skip to main content
Log in

Biochemische Grundlagen der gestörten Wechselbeziehungen zwischen Kohlenhydrat- und Fettstoffwechsel bei Diabetes mellitus

  • Übersichten
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Beim Diabetes mellitus sprechen klinische und biochemische Befunde für eine Störung der Beziehungen zwischen Kohlenhydrat- und Fettstoffwechsel, die durch ein komplexes Wechselspiel lipogenetisch und lipolytisch wirksamer Hormone reguliert werden.

Als wichtigster Parameter dieser Wechselbeziehungen ist der Plasmaspiegel der freien Fettsäuren anzusehen. Er ist direkt proportional der intracellulären Acyl-CoA-Konzentration der Fettzellen. Der Acyl-CoA-Spiegel der Fettzellen ist insulinabhängig durch:

  1. 1.

    Vermehrte Glucoseeinschleusung mit Glycerin-1-£ und Acetyl-CoA-Erhöhung.

  2. 2.

    Aktivierung der Lipoproteinlipase.

  3. 3.

    Hemmung der Wirkung lipolytischer Hormone an der Adenylcyclase.

Ein Insulindefizit führt somit zur Hyperlipacidämie. Diese bewirkt:

  1. 1.

    An der Muskelzelle eine Glucoseverwertungsstörung durch Hemmung der Glykolyse an 4 Stellen: Glucosepermeation, Hexokinase, Phosphofructokinase, Pyruvatdehydrogenase. Daraus resultiert eine Hyperglykämie, die einerseits die Triglyceridablagerung im Fettgewebe fördert, andererseits durch Stimulierung derβ-Zellen zu deren Erschöpfung führt und als Promotionsphase der diabetischen Erbanlage gewertet werden kann.

  2. 2.

    An der Leberzelle eine Steigerung der Lipoproteinsynthese, die bei relativem „Nachhinken“ der Proteinsynthese zur Fettleber führt. Wird die Glycerokinasereaktion in der Leberzelle der begrenzende Schritt, erfolgt durch Endprodukthemmung der langkettigen Acyl-CoA's eine Acetyl-CoA-Anhäufung, die zur Ketogenese führt.

  3. 3.

    An der Gefäßwand durch intracelluläre Cholesterinanhäufung eine Verfettung und Zellproliferation der Endothelzellen mit Verschiebung des Verhältnisses der sauren zu den neutralen Mucopolysacchariden. Hieraus resultiert eine Filtrationsstörung der Grundsubstanz mit Retention von Lipoproteinen, Cholesterin, Triglyceriden, Phosphatiden, Ca++.

Die Fettstoffwechselstörung spielt somt eine wesentliche Rolle bei der Manifestation der diabetischen Erbanlage. Durch die Auswirkung auf Leber und Gefäßwände beeinflußt sie auch entscheidend die Prognose des Diabetes mellitus.

Summary

Clinical and chemical findings give strong evidence for a disturbance of the interaction between carbohydrate and lipid metabolism during diabetes mellitus. The interaction between carbohydrate and lipid metabolism is normally controlled by a complex balance between lipogenetic and lipolytic hormones. The plasma concentration of free fatty acids constitutes the crucial parameter of this balance and is directly related to the intracellular acyl-CoA concentration of the fat cells. The intracellular acyl-CoA concentration is insulin-dependant for the following reasons:

  1. 1.

    Insulin faciliates glucose entry into fat cells with concomitant increase of glycerol-1-phosphate and acetyl-CoA.

  2. 2.

    Insulin inhibits the effect of lipolytic hormones at the adenylcyclase system.

  3. 3.

    Insulin activates the lipoproteinlipase.

Thus the absolute or relative insulin deficiency results in a hyperlipacidemia by suppression of lipogenesis with concurrent increase in lipolysis.

The hyperlipacidemia causes:

  1. 1.

    An impedance of glucose utilization of the muscle cell by an four-fold inhibition of glycolysis at the following points: Glucose-permeation, hexokinase, phosphofructokinase, pyruvatedehydrogenase. Thus there results a hyperglycemia which on the one hand favours triglyceride deposition in adipose tissue, on the other hand leads to exhaustive stimulation of the islets of Langerhans. These stimulus for continued insulin secretion may be appreciated as a promotor of the diabetic genetic defect.

  2. 2.

    An increased lipoprotein synthesis in the hepatocyte leading to fatty liver when synthesis of the protein portion of the lipoproteins “lags behind” triglyceride synthesis. As soon as the glycerokinase-reaction becomes the rate limiting step of triglycerides synthesis in hepatocyte acetyl-CoA will accumulate as the result of long chain acyl-CoA mediated end-product inhibition. The removal of the elevated acetyl-CoA concentration by the HMG-CoA cycle leads to ketogenesis.

  3. 3.

    Fatty degeneration and cell proliferation of the endothelial cells of the blood vessel walls by an intracellular increase of cholesterol. Furthermore the ratio of the acid mucopolysaccharides to the neutral mucopolysaccharides is shifted to the former. The resultant impedance of filtration through the ground substance of blood vessels causes a retention of lipoproteins, cholesterol, triglycerides, phospholipids, Ca++.

Thus the alteration of lipid metabolism seen during diabetes mellitus contributes an equally important part to the manifestation of diabetic genetic defect and, as a consequence of its effect on the liver and blood vessel walls, as to the prognosis of diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

ACTH:

Adrenocorticotropes Hormon

AMP:

Adenosinmonophosphat

ATP:

Adenosintriphosphat

CoA:

Coenzym A

DOAP:

Dihydroxyacetonphosphat

FADH2 :

Reduziertes Flavinadenindinucleotid

Glc:

Glucose

β-HMG-CoA:

β-Hydroxy-β-Methyl-Glutaryl-Coenzym A

LCAT:

Lecithin-Cholesterin-Acyl-Transferase

LPL:

Lipoproteinlipase

NADH2 :

reduziertes Niacinamidadenindinucleotid

NADPH2 :

reduziertes Niacinamidadenindinucleotidphosphat

£:

Phosphat

PDH:

Pyruvatdehydrogenase

PFK:

Phosphofructokinase

STH:

Somatotropes Hormon

TSH:

Thyreoideastimulierendes Hormon

VLDL:

Very low density lipoproteins.

Literatur

  1. Amenta, J. S., Waters, L. L.: The precipitation of serum lipoproteins by mucopolysaccharides extracted from aortic tissue. Yale J. Biol. Med.33, 112 (1960).

    Google Scholar 

  2. Ayer, J. P.: Elastic tissue. In: D. A. Hall, ed. International review of connective tissue research. vol. 2, p. 33. New York: Academic Press 1964.

    Google Scholar 

  3. Bally, P. R., Cahill, G. F., Jr., Leboeuf, B., Renold, A. E.: Studies on rat adipose tissue in vitro: Effects of glucose and insulin on the metabolism of palmitate-1-14C. J. biol. Chem.235, 333 (1966).

    Google Scholar 

  4. Bangham, A. D., Horne, R. W.: Negative staining of phospholipids and their structural modifications by surfaceactive agents as observed in the electron microscope. J. molec. Biol.8, 660 (1964).

    Google Scholar 

  5. Benedetti, E. L., Emmelot, P.: Ultrastructure of plasma membrane after phospholipase C treatment. J. Microscop.5, 645 (1966).

    Google Scholar 

  6. Biermann, E. L., Dole, V. P., Roberts, T. N.: An abnormality of nonesterified fatty acid metabolism in diabetes mellitus. Diabetes6, 475 (1957).

    Google Scholar 

  7. —— Schwartz, J. L., Dole, V. P.: Action of insulin on release of fatty acids from tissue stores. Amer. J. Physiol.191, 359 (1957).

    Google Scholar 

  8. —— Dole, V. P., Roberts, T. N.: An abnormality of nonesterified fatty acid metabolism in diabetes mellitus. Diabetes7, 189 (1958).

    Google Scholar 

  9. Blecher, M.: Phospholipase C and mechanisms of action of insulin and cortisol on glucose entry into free adipose cells. Biochem. biophys. Res. Commun.21, 202 (1965).

    Google Scholar 

  10. —— Effects of insulin and phospholipase A on glucose transport across the plasma membrane of free adipose cells. Biochim. biophys. Acta (Amst.)137, 557 (1967).

    Google Scholar 

  11. —— Insulin-like, antilipolytic actions of phospholipase A in isolated rat adipose cells. Biochim. biophys. Acta (Amst.)187, 380 (1969).

    Google Scholar 

  12. Bortz, W. M., Lynen, F.: The inhibition of acetyl-CoA-carboxylase by long chain acyl-CoA-derivatives. Biochem. Z.337, 505 (1963).

    Google Scholar 

  13. —— —— Elevation of long chain acyl-CoA-derivatives in liver of fasted rats. Biochem. Z.339, 77 (1963).

    Google Scholar 

  14. Buddecke, E.: Untersuchungen zur Chemie der Arterienwand; Darstellung und chemische Zusammensetzung der Mucopolysaccharide der Aorta des Menschen. Hoppe-Seylers Z. physiol. Chem.318, 33 (1960).

    Google Scholar 

  15. —— Chemical changes in the ground substance of the vessel wall in atherosclerosis. J. Atheroscler. Res.2, 32 (1962).

    Google Scholar 

  16. —— Biochemie der Arterienwand. Umschau21, 668 (1963).

    Google Scholar 

  17. Bühring, H., Kühnau, J.: Gesamt- und Acetyl-CoA in der Leber normaler und alloxandiabetischer Ratten. Klin. Wschr.38, 694 (1960).

    Google Scholar 

  18. Butcher, R. W., Ho, R.J., Meng, H. C., Sutherland, E.: Adenosine 3′,5′-monophosphate in biological materials II. The measurement of adenosine 3′,5′-monophosphate in tissues and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine. J. biol. Chem.240, 4515 (1965).

    Google Scholar 

  19. —— Cyclic 3′,5′-AMP and the lipolytic effects of hormones on adipose tissue. Pharmacol. Rev.18, 237 (1966).

    Google Scholar 

  20. —— Sneyd, J. G. T., Park, C. R., Sutherland, E. W.: Effect of insulin on adenosine 3′,5′-monophosphate in rat epididymal fat pad. J. biol. Chem.241, 694 (1966).

    Google Scholar 

  21. Cahill, G. F., Jr., Jeanrenaud, B., Leboeuf, B., Renold, A. E.: Effects of insulin on adipose tissue. Ann. N.Y. Acad. Sci.82, 403 (1959).

    Google Scholar 

  22. Crofford, O. B., Renold, A. E.: Glucose uptake by incubated rat epididymal adipose tissue. Rate limiting steps and site of insulin action. J. biol. Chem.240, 14 (1965).

    Google Scholar 

  23. —— —— Glucose uptake by incubated rat epididymal adipose tissue. Characteristics of the glucose transport system and action of insulin. J. biol. Chem.240, 3237 (1965).

    Google Scholar 

  24. —— Stauffacher, W., Jeanrenaud, B., Renold, A. E.: Glucose transport in isolated fat cells. Procedure for measurement of the intracellular water space. Helv. physiol. pharmacol. Acta24, 45 (1966).

    Google Scholar 

  25. —— Countertransport of 3-o-methyl glucose in incubated rat epididymal adipose tissue. Amer. J. Physiol.212, 217 (1967).

    Google Scholar 

  26. Carlson, L. A.: The inhibition of the mobilization of free fatty acids from adipose tissue. Ann. N.Y. Acad. Sci.131, 119 (1965).

    Google Scholar 

  27. Chernick, S., Srere, R. A., Chaikoff, I. L.: Metabolism of arterial tissues: Lipid synthesis, formation in vitro of fatty acids and phospholipids by rat artery with14C and32P as indicators. J. biol. Chem.179, 113 (1949).

    Google Scholar 

  28. Constantinides, P.: Experimental atherosclerosis. Amsterdam: Elsevier Publ. Co. 1965.

    Google Scholar 

  29. Cornwell, D. G., Kruger, F. A.: Molecular complexes in the isolation and characterization of plasma lipoproteins. J. Lipid Res.2, 110 (1961).

    Google Scholar 

  30. Denton, R. M., Randle, P. J.: Citrate and the regulation of adipose tissue phosphofructokinase. Biochem. J.100, 420 (1966).

    Google Scholar 

  31. Dixon, K. C.: Fatty depositions. A disorder of the cell. J. exp. Physiol.43, 139 (1958).

    Google Scholar 

  32. Dole, V. P.: A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J. clin. Invest.35, 150 (1956).

    Google Scholar 

  33. Duncan, L. E., Jr.: Mechanical factors in the localization of atheroma. In: R. J. Jones, ed., Evolution of the atherosclerotic plaque, p. 171. Chicago: Univ. Press 1963.

    Google Scholar 

  34. Evans, J. R., Opie, L. H., Renold, A. E.: Pyruvate metabolism in the perfused rat heart. Amer. J. Physiol.205, 971 (1963).

    Google Scholar 

  35. Eggstein, M.: Diabetes und Fett. Med. Welt1967, 843.

  36. Faber, M.: The human aorta. Sulfate containing polyurides and the deposition of cholesterol. Arch. Path.48, 342 (1949).

    Google Scholar 

  37. Feigelson, E. B., Pfaff, W. W., Karmen, A., Steinberg, D.: The role of plasma free fatty acids in development of fatty liver. J. clin. Invest.40, 2171 (1961).

    Google Scholar 

  38. Fredrickson, D. S., Levy, R. D.: A functional view of the plasma lipoproteins. In: 16. Colloquium der Ges. f. physiol. Chemie, p. 124. Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  39. Garland, P. B., Randle, P. J., Newsholme, E. A.: Citrate as an intermediary in the inhibition of phosphofructokinase in rat heart muscle by fatty acids, ketone bodies, pyruvate, diabetes and starvation. Nature (Lond.)200, 169 (1963).

    Google Scholar 

  40. —— —— Control of pyruvate dehydrogenase in the perfused rat heart by the intracellular concentration of acetyl-CoA. Biochem. J.91, 6C-7C (1964).

    Google Scholar 

  41. —— —— Newsholme, E. A.: Regulation of glucose uptake by muscle. 9. Effects of fatty acids and ketone bodies and diabetes and starvation on pyruvate metabolism and lactate to pyruvate and L-glycerol-3-phosphate to 3-dihydroxyacetone-phosphate ratios in rat heart and rat diaphragm muscles. Biochem. J.93, 665 (1964).

    Google Scholar 

  42. —— —— Regulation of glucose uptake by muscle. 10. Effects of diabetes, starvation, hypophysectomy and adrenalectomy and fatty acids, ketone bodies, and pyruvate on glycerol output and concentrations of free fatty acids, long chain fatty acyl-CoA, glycerolphosphate and citrate cycle intermediates in rat heart and diaphragm muscles. Biochem. J.93, 678 (1964).

    Google Scholar 

  43. Gey, F. K.: Biochemische Probleme der Arteriosklerose-Entstehung. In: Ernährung und Atherosklerose, Fortbildungskurs und Symposium, Bad Ragaz 1968, Bd. 12, S. 37–59. Basel-New York: Karger 1969.

    Google Scholar 

  44. Gidez, L. J., Roheim, P. S., Eder, H. A.: Effect of plasma free fatty acid concentrations on triglyceride synthesis by the perfused liver. Fed. Proc.21, 289 (1962).

    Google Scholar 

  45. Gofman, J. W., Young, W.: The filtration concept of atherosclerosis and serum lipids in the diagnosis of atherosclerosis. In: (M. Sandler and G. H. Bourne, eds.), Atherosclerosis and its origin, p. 197. New York: Academic Press 1963.

    Google Scholar 

  46. Goodridge, A. G., Ball, A. E.: Lipogenesis in pigeon: In vitro studies. Amer. J. Physiol.211, 803 (1966).

    Google Scholar 

  47. Gordon, R. S., Jr., Cherkes, A.: Unesterified fatty acids in human blood plasma. J. clin. Invest.35, 206 (1956).

    Google Scholar 

  48. —— —— Production of unesterified fatty acids from isolated rat adipose tissue incubated in vitro. Proc. Soc. exp. Biol. (N.Y.)97, 150 (1958).

    Google Scholar 

  49. Gorin, E., Shafrir, E.: Lipolytic activity in adipose tissue homogenate toward tri-, di- and mono-glyceride substrates. Biochim. biophys. Acta (Amst.)84, 24 (1964).

    Google Scholar 

  50. Hartmann, F.: Zur Pathogenese der Fettleber. In: Fettleber-Symposion, Erlangen 1967, S. 51. Lochham bei München: Pallas-Verlag 1968.

    Google Scholar 

  51. —— Schlaak, M., Jipp, P.: Das Verhalten der Gefäßwand unter chronischer experimenteller Cholesterinbelastung. J. Atheroscler. Res.6, 531 (1966).

    Google Scholar 

  52. Hausberger, F. X., Milstein, S. W., Rutman, R. J.: The influence of insulin on glucose utilisation in adipose and hepatic tissues in vitro. J. biol. Chem.208, 431 (1954).

    Google Scholar 

  53. Hauss, W. H., Junge-Hüsing, G.: Über die irreversible unspezifische Mesenchymreaktion. Dtsch. med. Wschr.86, 763 (1961).

    Google Scholar 

  54. —— —— Holländer, H. J.: Changes in metabolism of connective tissue associated with ageing and arterio- or athero-sclerosis. J. Atheroscler. Res.2, 50 (1962).

    Google Scholar 

  55. —— —— König, F.: Über das Vorkommen von Veränderungen des Mucopolysaccharidstoffwechsels in der Klinik, Teil 2 (Klinische Beobachtungen zur unspezifischen Mesenchymreaktion bei Arteriosklerose, insbesondere bei Herzinfarkt). Med. Welt3, 125 (1963).

    Google Scholar 

  56. —— —— Mathes, K. J., Wirth, W.: Über den Einfluß von Schock und Hyperlipämie auf den Lipidgehalt, die Lipidsynthese und die Mucopolysaccharidsynthese der Gefäßwand. J.Atheroscler. Res.5, 451 (1965).

    Google Scholar 

  57. Hernandez, A., Sols, A.: Transport and phosphorylation of sugars in adipose tissue. Biochem. J.86, 166 (1963).

    Google Scholar 

  58. Hirsch, J.: Fatty acid patterns in human adipose tissue. In: Handbook of physiology, sect. 5: Adipose tissue (A. E. Renold and G. F. Cahill, Jr., eds.), p. 181. American Physiological Society, Washington, D. C. 1965.

    Google Scholar 

  59. Ho, R. J., Atkin, E., Meng, H. C.: Lipase release induced by compound 48/80 in rat and perfused rat heart. Amer. J. Physiol.210, 299 (1966).

    Google Scholar 

  60. Ho, S. J., Ho, R. J., Meng, H. C.: Comparison of heparin-released and epinephrine sensitive lipases in rat adipose tissue. Amer. J. Physiol.212, 284 (1967).

    Google Scholar 

  61. Hollenberger, C. H.: Transfer of fatty acids between triglyceride species in rat adipose tissue. J. Lipid. Res.6, 84 (1965).

    Google Scholar 

  62. —— The origin and glyceride distribution of fatty acids in rat adipose tissue. J. clin. Invest.45, 205 (1966).

    Google Scholar 

  63. Ingle, D. J.: The role of the adrenal cortex in homeostasis. Pediatrics17, 407 (1956).

    Google Scholar 

  64. Jeanrenaud, B., Renold, A. E.: Metabolic pattern produced in rat adipose tissue by varying insulin and glucose concentrations independently from each other. J. biol. Chem.234, 3082 (1959).

    Google Scholar 

  65. —— Stauffacher, W.: Die Wirkung des Insulins am Fettgewebe. In: Die Pathogenese des Diabetes mellitus. Die endokrine Regulation des Fettstoffwechsels. S. 188. Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  66. —— Adipose tissue dynamics and regulation revisted. In: Ergebn. Physiol.60, 57 (1968).

    Google Scholar 

  67. Jungas, R. L., Ball, E. G.: Studies on the metabolism of the adipose tissue. XII. The effects of insulin and epinephrine on free fatty acid and glycerol production in the presence and absence of glucose. Biochemistry (Wash.)2, 383 (1963).

    Google Scholar 

  68. Kaplan, D., Meyer, K.: Mucopolysaccharides of aorta at various ages. Proc. Soc. exp. Biol. N.Y.105, 78 (1960).

    Google Scholar 

  69. Karlson, P.: Kurzes Lehrbuch der Biochemie. Stuttgart: Georg Thieme 1967.

    Google Scholar 

  70. Kavanau, J. L.: Structure and function in biological membranes, vol. I and II. San Francisco: Holden-Day 1965.

    Google Scholar 

  71. Kipnis, D. M.: Regulation of glucose uptake by muscle: functional significance of permeability and phosphorylation activity. Ann. N.Y. Acad. Sci.82, 354 (1959).

    Google Scholar 

  72. Kirk, J. E.: Intermediary metabolism of human arterial tissue and its changes with age and atherosclerosis. In: (M. Sandler and G. H. Bourne, eds.), Atherosclerosis and its origin, p. 67. New York-London: Academic Press 1963.

    Google Scholar 

  73. Klynstra, F. B., Böttcher, C. J. F., Melsen, J. A. van, Laan, E. J. van der: Distribution and composition of acid mucopolysaccharides in normal and atherosclerotic human aortas. J. Atheroscler. Res.7, 301 (1967).

    Google Scholar 

  74. Kono, T.: Destruction of insulin effector system of adipose tissue cells by proteolytic enzymes. J. biol. Chem.244, 1772 (1969).

    Google Scholar 

  75. Krahl, M. E.: The effect of insulin and pituitary hormones on glucose uptake in muscle. Ann. N.Y. Acad. Sci.54, 649 (1951).

    Google Scholar 

  76. —— The action of insulin on cells. New York: Academic Press 1961.

    Google Scholar 

  77. Krebs, H. A.: The regulation of the release of ketone bodies by the liver. In: (G. Weber, ed.) Advances in enzyme regulation, vol. 4, p. 339, London-New York-Frankfurt: Pergamon Press 1965.

    Google Scholar 

  78. Kresse, H., Buddecke, E.: Aktivitätsänderungen von Glykosaminoglycano-Hydrolasen des Arteriengewebes im Alter und bei Arteriosklerose. Hoppe-Seylers Z. physiol. Chem.348, 1235 (1967).

    Google Scholar 

  79. Kuo, J. F., Holmlund, C. E., Dill, J. K., Bohonos, N.: Insulin-like activity of a microbial protease on isolated fat cells. Arch. Biochem. Biophys.117, 269 (1966).

    Google Scholar 

  80. —— —— —— —— The effect of proteolytic enzymes on isolated adipose cells. Life Sci.5, 2257 (1966).

    Google Scholar 

  81. Lacson, T., McCann, D. S., Boyle, A. J.: Effects of Mg-EDTA on the mucopolysaccharide metabolism in the atherosclerotic aorta. J. Atheroscler. Res.6, 277 (1966).

    Google Scholar 

  82. Lardy, H. A.: Gluconeogenesis: pathways and hormonal regulation. Harvey Lect.60, 261 (1964–1965).

    Google Scholar 

  83. Laurell, S.: Plasma free fatty acids in diabetic acidosis and starvation. Scand. J. clin. Lab. Invest.8, 81 (1956).

    Google Scholar 

  84. Lehninger, A. L.: The metabolism of the arterial wall. In: (A. I. Lansing, ed.) The arterial wall, p. 220. Baltimore: Williams & Wilkins Co. 1959.

    Google Scholar 

  85. Letarte, J., Renold, A. E.: Effects of cations upon glucose transport in isolated fat cells. Protides of the biological fluids. Proc. of the 15-th Colloquium, 1967 (H. Peeters, ed.). Amsterdam-London-New York: Elsevier Publ. Co.

    Google Scholar 

  86. —— —— Glucose metabolism in fat cells stimulated by insulin and dependent on sodium. Nature (Lond.)215, 961 (1967).

    Google Scholar 

  87. Levine, R., Goldstein, M.: On the mechanism of action of insulin. Recent Progr. Hormone Res.11, 343 (1955).

    Google Scholar 

  88. —— Cell membrane as a primary site of insulin action. Fed. Proc. (Sympos.)24, 1071 (1965).

    Google Scholar 

  89. Levy, R. J., Lees, R. S., Fredrickson, D. S.: The nature of pre-beta (very low density) lipoproteins. J. clin. Invest.45, 63 (1966).

    Google Scholar 

  90. Likar, J. N., Likar, L. J., Robinson, R. W.: Bovine arterial disease. Part. 3 Elastic tissue and mural acid mucopolysaccharides in bovine coronary arteries without gross lesions. J. Atheroscler. Res.8, 643 (1968).

    Google Scholar 

  91. Lipmann, F.: Acetyl phosphate. Advanc.-Enzymol.6, 231 (1946).

    Google Scholar 

  92. Lucy, J. A.: Globular lipid micelles and cell membranes. J. theor. Biol.7, 360 (1964).

    Google Scholar 

  93. Lynen, F., Reichert, E., Rueff, L.: Zum biologischen Abbau der Essigsäure VI: Aktivierte Essigsäure, ihre Isolierung aus Hefe und ihre chemische Natur. Ann. Chem.574, 1 (1951).

    Google Scholar 

  94. —— Acetyl CoA and the “fatty acid cycle”. Harvey Lect.48, 210 (1952–1953).

    Google Scholar 

  95. —— Henning, U., Bublitz, C., Sörbo, B., Kröplin-Rueff, L.: Der chemische Mechanismus der Acetessigsäurebildung in der Leber. Biochem. Z.330, 269 (1958).

    Google Scholar 

  96. Mandel, P.: Rôle du métabolisme de la parvi arterielle dans la génèse de l'athérome. Arch. Sci. med.113, 223 (1962).

    Google Scholar 

  97. Margolis, S., Vaughan, M.: α-L-glycerophosphate synthesis and breakdown in homogenates of adipose tissue. J. biol. Chem.237, 44 (1962).

    Google Scholar 

  98. Markscheid, L., Shafrir, E.: Incorporation of lipoproteinborn triglycerides by adipose tissue in vitro. J. Lipid. Res.6, 247 (1965).

    Google Scholar 

  99. Moore, R. D., Schoenberg, M. D.: The relations of mucopolysaccharides of vessel walls to elastic fibres and endothelial cells. J. Path. Bact.177, 163 (1959).

    Google Scholar 

  100. Morgan, H. E., Regen, D. M., Park, C. R.: Identification of a mobile carrier-mediated sugar transport system in muscle. J. biol. Chem.239, 369 (1964).

    Google Scholar 

  101. Muir, H.: Glycosaminoglycans and glycoproteins in blood-vessel walls. In (E. A. Balazs and R. W. Jeanloz, eds.): The amino sugars, p. 311. New York-London: Academic Press 1965.

    Google Scholar 

  102. Nestel, P., Steinberg, D.: Fate of palmitate and linoleate perfused through the isolated rat liver at high concentrations. J. Lipid. Res.4, 461 (1963).

    Google Scholar 

  103. Newsholme, E. A., Randle, P. J.: Regulation of glucose uptake by muscle. 7. Effects of fatty acids, ketone bodies and pyruvate and diabetes and starvation, hypophysectomy and adrenalectomy on concentrations of hexose phosphates, nucleotides and inorganic phosphate in perfused isolated rat heart. Biochem. J.93, 641 (1964).

    Google Scholar 

  104. Nicholls, D. G., Garland, P. B.: Continuous recording techniques for oxygen uptake and carbon dioxide output applied to the study of pyruvate oxidation by rat liver mitochondria. Biochem. J.100, 779 (1966).

    Google Scholar 

  105. Numa, S., Matsuhashi, M., Lynen, F.: Zur Störung der Fettsäuresynthese bei Hunger und Alloxandiabetes I. Fettsäuresynthese in der Leber normaler und hungernder Ratten. Biochem. Z.334, 203 (1961).

    Google Scholar 

  106. —— Ringelmann, E., Lynen, F.: Zur Hemmung der Acetyl-CoA-Carboxylase durch Fettsäure-Coenzym A-Verbindungen. Biochem. Z.343, 243 (1965).

    Google Scholar 

  107. Park, C. K., Reinwein, D., Henderson, M. J., Cadenas, E., Morgan, H.: The action of insulin on the transport of glucose through the cell membrane. Amer. J. Med.26, 674 (1959).

    Google Scholar 

  108. —— Morgan, H. E., Henderson, M. J., Regen, D. M., Cadenas, E., Post, R. L.: Regulation of glucose uptake in muscle as studied in the perfused rat heart. Recent Progr. Hormone Res.17, 493 (1961).

    Google Scholar 

  109. Parmeggiani, A., Bowman, R. H.: Regulation of phosphofructokinase activity by citrate in normal and diabetic muscle. Biochem. biophys. Res. Commun.12, 268 (1963).

    Google Scholar 

  110. Platt, D.: Hyaluronidase-, β-Glucuronidase und β-Acetyl-Glucosaminidase-Aktivität in normalen und arteriosklerotisch veränderten menschlichen Aorten. Klin. Wschr.45, 92 (1967).

    Google Scholar 

  111. Pogson, C. J., Randle, P. J.: The control of rat heart phosphofructokinase by citrate and other regulators. Biochem. J.100, 683 (1966).

    Google Scholar 

  112. —— —— Effects of alloxan-diabetes, starvation and hypophysectomy on total phosphofructokinase activity in rat heart. Nature (Lond.)212, 1053 (1966).

    Google Scholar 

  113. Rabinowitz, D., Zierler, K. L.: Forearm metabolism in obesity and its response to intraarterial insulin. J. clin. Invest.41, 2191 (1962).

    Google Scholar 

  114. Randle, P. J., Morgan, H. E.: Regulation of glucose uptake by muscle. Vit. and Horm.20, 199 (1962).

    Google Scholar 

  115. —— Garland, P. B., Hales, C. N., Newsholme, E. A.: The glucose fatty acid cycle. Lancet1963 I, 785.

    Google Scholar 

  116. —— Newsholme, E. A., Garland, P. B.: Regulation of glucose uptake by muscle. 8. Effects of fatty acids, ketone bodies and pyruvate, and diabetes and starvation on uptake and metabolic fate of glucose in rat heart and diaphragm muscles. Biochem. J.93, 652 (1964).

    Google Scholar 

  117. —— Carbohydrate metabolism and lipid storage and breakdown in diabetes. Diabetologia2, 237 (1966).

    Google Scholar 

  118. —— Garland, P. B., Hales, C. N., Newsholme, E. A., Denton, R. M., Pogson, C. J.: Interactions of metabolism and the physiological role of insulin. Recent Progr. Hormone Res.22, 1 (1966).

    Google Scholar 

  119. Rao, A. R., Rao, B. S. N.: Incorporation of 1-14C-acetate into the lipids of aortas of different species. J. Atheroscler. Res.8, 59 (1968).

    Google Scholar 

  120. Renold, A. E., Crofford, O. B., Stauffacher, W., Jeanrenaud, B.: Hormonal control of adipose tissue metabolism with special reference to the effect of insulin. Diabetologia1, 4 (1965).

    Google Scholar 

  121. —— Cahill, G. F., Jr.: Handbook of physiology, sect. 5: Adipose tissue. American Physiological Soc. Washington, D.C. 1965.

    Google Scholar 

  122. Ritz, E.: Der Pentosezyklus im Arteriengewebe. J. Atheroscler. Res.8, 445 (1968).

    Google Scholar 

  123. Rizack, M. A.: Activation of an epinephrine-sensitive lipolytic activity from adipose tissue by adenosine 3′,5′-phosphate. J. biol. Chem.239, 392 (1964).

    Google Scholar 

  124. —— Hormone sensitive lipolytic activity of adipose tissue. In: Handbook of physiology, sect. 5: Adipose tissue. American Physiological Society, Washington D.C. 1965.

    Google Scholar 

  125. Robinson, D. S., Harris, P. M., Ricketts, R.: The clearing factor lipase activity of adipose tissue. In: Handbook of physiology, sect. 5: Adipose tissue. American physiological society. Washington D.C. 1965.

    Google Scholar 

  126. Rodbell, M.: Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J. biol. Chem.239, 375 (1964).

    Google Scholar 

  127. —— Localization of lipoprotein lipase in fat cells of rat adipose tissue. J. biol. Chem.239, 753 (1964).

    Google Scholar 

  128. —— Scow, R. O.: Chylomicron metabolism uptake and metabolism by perfused adipose tissue. In: Handbook of physiology, sect. 5: Adipose tissue. American physiological Society. Washington, D. C. 1965.

    Google Scholar 

  129. —— The metabolism of the isolated fat cells II. The similar effects of phospholipase C and of insulin on glucose and amino acid metabolism. J. biol. Chem.241, 130 (1966).

    Google Scholar 

  130. —— Jones, A. B.: The metabolism of isolated fat cells III. The similar inhibitory action of phospholipase C and of insulin on lipolysis stimulated by lipolytic hormones and theophylline. J. biol. Chem.241, 140 (1966).

    Google Scholar 

  131. —— Metabolism of isolated fat cells V: Preparation of “ghosts” and their properties. Adenyl cyclase and other enzymes. J. biol. Chem.242, 5744 (1967).

    Google Scholar 

  132. —— The effect of insulin, lipolytic hormones and theophylline on glucose transport and metabolism in “ghosts”. J. biol. Chem.242, 5751 (1967).

    Google Scholar 

  133. —— Jones, A. B., Chiappe de Cingolani, G. E., Birnbaumer, L.: Recent Progr. Hormone Res.24, 215 (1968).

    Google Scholar 

  134. Rudman, D., Garcia, L. A., del Rio, A., Akgun, S.: Further observations on the cleavage of bovine insulin by rat adipose tissue. Biochemistry (Wash.)7, 1864 (1968),

    Google Scholar 

  135. —— —— —— Effects on mammalian adipose tissue of fragments of bovine insulin and of certain synthetic peptides. Biochemistry (Wash.)7, 1875 (1968),

    Google Scholar 

  136. —— Seidman, F., Brown, S. J., Hirsch, R. C.: Adipokinetic activity of porcine fraction H in the rabbit, guinea pig, rat and mouse. Endocrinology70, 233 (1962).

    Google Scholar 

  137. Rutstein, D., Castelli, W. P., Nickerson, R. J.: Effect of carbohydrate in humans on intracellular lipid deposition in tissue culture. Amerc. J. Nutr.20, 98 (1967).

    Google Scholar 

  138. Salaman, M. R., Robinson, D. S.: Clearing factor lipase in adipose tissue. A medium in which the enzyme activity of tissue from starved rats increases in vitro. Biochem. J.99, 640 (1966).

    Google Scholar 

  139. Sandler, M., Bourne, H. G.: Histochemistry of atherosclerosis in the rat, dog and man. In: Atherosclerosis and its origin, p. 515. New York-London: Academic Press 1963.

    Google Scholar 

  140. Sanwald, R., Ritz, E., Hug, B.: Untersuchungen zum Stoffwechsel der sauren Mukopolysaccharide in normalen und arteriosklerotisch veränderten frischen menschlichen Arterien. J. Atheroscler. Res.8, 433 (1968).

    Google Scholar 

  141. Schettler, G.: Statistische Angiochemie der Arteriosklerose. In: G. Schettler, ed., Arteriosklerose, p. 91. Stuttgart: Thieme 1961.

    Google Scholar 

  142. Schweizer, E., Oesterhelt, D., Chau, W., Duba, Ch., Lynen, F.: Zum Mechanismus der Fettsäuresynthese. 16. Colloquium d. Gesell. f. physiol. Chem. S. 49. Berlin-New York-Heidelberg: Springer 1966.

    Google Scholar 

  143. Scott, J. E.: Ion-binding in solutions containing acid-mucopolysaccharides. In: (G. Quintarelli, ed.) The chemical physiology of mucopolysaccharides, p. 171. Boston: Little-Brown Co. 1968.

    Google Scholar 

  144. Shafrir, E., Sussman, K. E., Steinberg, D.: Mobilization of lipids in epinephrine-treated, adrenalectomized and hypophysectomized animals. Fed. Proc.18, 321 (1959).

    Google Scholar 

  145. —— —— —— Adrenaline induced hyperlipidemia and its modification by glucose. J. Lipid. Res.1, 109 (1959).

    Google Scholar 

  146. Shapiro, B., Wertheimer, E.: Triglyceride metabolism. In: Handbook of physiology, sect. 5: Adipose tissue. American Physiological Society, Washington D.C. 1965.

    Google Scholar 

  147. Shore, M. L., Zilvermit, D. B., Ackerman, R. F.: Plasma phospholipid deposition and aortic phospholipid synthesis in experimental atherosclerosis. Amer. J. Physiol.181, 527 (1955).

    Google Scholar 

  148. Shrago, E., Spinnetta, T., Gordon, E.: Fatty acid synthesis in human adipose tissue. J. biol. Chem.244, 10 2761 (1969).

    Google Scholar 

  149. Sjöstrand, F. S.: In: Cytology and cell physiology (G. H. Bourve, ed.), p. 311. New York: Academic Press 1964.

    Google Scholar 

  150. Smith, S. W., Weiss, S. B., Kennedy, E. P.: The enzymatic dephosphorylation of phosphatide acids. J. biol. Chem.228, 915 (1957).

    Google Scholar 

  151. Steinberg, D.: Catecholamine stimulation of fat mobilization and its metabolic consequences. Pharmacol. Rev.18, 217 (1966).

    Google Scholar 

  152. Sutherland, E. W., Øye, J., Butcher, R.: The action of epinephrine and the role of adenyl cyclase system in hormone action. Recent Progr. Hormone Res.21, 623 (1965).

    Google Scholar 

  153. Tarnowski, W.: Die Pathogenese der diabetischen Fettstoffwechselstörung. Med. Welt 1966, 1859/1952.

  154. Taylor, C. B.: The reaction of arteries to injury by physical agents. With a discussion of arterial repair and its relationship to atherosclerosis. In: Symposium on atherosclerosis, p. 74, publ. 338 (National Academy of Sciences-National Research Council, Washington 1954).

  155. Tzur, R., Tal, E., Shapiro, B.: L-α-Glycerophosphate as regulatory factor in fatty acid esterification. Biochim. biophys. Acta (Amst.)84, 18 (1964).

    Google Scholar 

  156. Vaughan, M.: The production and release of glycerol by adipose tissue incubated in vitro. J. biol. Chem.237, 3354 (1962).

    Google Scholar 

  157. —— Berger, J. E., Steinberg, D.: Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J. biol. Chem.239, 401 (1964).

    Google Scholar 

  158. Waters, L. L.: The reaction of the artery wall to injury by chemicals or infection. In: (J. H. Page, ed.), Symposium on atherosclerosis, p. 91, publ. 338 (National Academy of Sciences-National Research Council, Washington 1954).

  159. Weis, J. S., Narahara, H. T.: Regulation of cell membrane permeability in skeletal muscle. J. biol. Chem.244, 3084 (1969).

    Google Scholar 

  160. Weiss, S. B., Kennedy, E. P.: The enzymatic synthesis of triglycerides. J. Amer. chem. Soc.78, 3550 (1956).

    Google Scholar 

  161. Wertheimer, E., Shafrir, E.: Influence of hormones on adipose tissue as a center of fat metabolism. Recent Progr. Hormone Res.16, 467 (1960).

    Google Scholar 

  162. Westermann, E.: Mechanismus und pharmakologische Beeinflussung der endokrinen Regulation des Fettstoffwechsels. In: 12. Symposion der Deutschen Gesellschaft für Endokrinologie (1966) (E. Klein, ed.) S. 154. Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  163. Whereat, A. F.: Recent advances in experimental and molecular pathology. Atherosclerosis and metabolic disorder in the arterial wall. Exp. molec. Path.7, 133 (1967).

    Google Scholar 

  164. White, J. E., Engel, F. L.: A lipolytic action of epinephrine and norepinephrine on rat adipose tissue in vitro. Proc. Soc. exp. Biol. (N.Y.)99, 375 (1958).

    Google Scholar 

  165. Wieland, O., Suyter, M.: Glycerokinase: Isolierung und Eigenschaften. Biochem. Z.329, 320 (1957).

    Google Scholar 

  166. ——, Weiss, L.: Zur Störung der Fettsäuresynthese bei Hunger und Alloxandiabetes. Die Fettsäuresynthese in der Leber alloxandiabetischer Ratten. Biochem. biophys. Res. Commun.10, 333 (1963).

    Google Scholar 

  167. Wilbrandt, W., Rosenberg, T.: The concept of carrier transport and its corollaries in pharmacology. Pharmacol. Rev.13, 109 (1963).

    Google Scholar 

  168. Wing, D. B., Salaman, M. R., Robinson, D. S.: Clearing-factor lipase in adipose tissue. Factors influencing the increase in enzyme activity produced on incubation of tissue from starved rats in vitro. Biochem. J.99, 648 (1966).

    Google Scholar 

  169. Zilversmit, D. B., McCandless, E. L., Jordan, P. H., Henly, W. S., Ackerman, R. F.: The synthesis of phospholipids in human atheromatous lesions. Circulation23, 370 (1961).

    Google Scholar 

  170. Zemplényi, T.: Vascular enzymes and atherosclerosis. J. Atheroscler. Res.7, 725 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulze, B., Kaffarnik, H. Biochemische Grundlagen der gestörten Wechselbeziehungen zwischen Kohlenhydrat- und Fettstoffwechsel bei Diabetes mellitus. Klin Wochenschr 48, 1147–1157 (1970). https://doi.org/10.1007/BF01486632

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01486632

Navigation