Skip to main content
Log in

Clonale Nervenzellinien in der Kultur — Modelle zum Studium molekularer Grundlagen neuropharmakologischer Wirkungen

Nerve cell clonal lines in culture — Models for studying the molecular basis of neuropharmacological actions

  • Übersichten
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

Nerve cell lines with stable properties are isolated from neuroblastomas, glioblastomas or pheochromocytomas by periodic cloning using defined culture media. After the action of different drugs, these cells show all morphological and biochemical signs of differentiation and maturation. Depending on the origin of the clone, the cell lines synthesise typical neurotransmitters, which are stored in vesicles. It is demonstrated on cell lines which synthesise catecholamines that noradrenergic and dopaminergic clones are particularly suitable test objects for basic research in neuropharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Amano T, Richelson E, Nirenberg M (1972) Neurotransmitter synthesis by neuroblastoma clones. Proc Natl Acad Sci USA 69:258–263

    Google Scholar 

  • Angeletti RH, Bradshaw RA (1971) Nerve groth factor from mouse submaxillary gland: Amino acid sequence. Proc Natl Acad Sci USA 68:2417–2420

    Google Scholar 

  • Augusti-Tocco G, Sato G (1969) Establishment of functional clonal lines of neurons from mouse neuroblastoma. Proc Natl Acad Sci USA 64:311–315

    Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455

    Google Scholar 

  • Blaschko H (1939) The specific action of 1-dopa decarboxylase. J Physiol 96:50P-51P

    Google Scholar 

  • Blaschko H (1972) Introduction. Catecholamines 1922–1971. In: Blaschko H, Muscholl E (eds) Catecholamines. Handbuch der experimentellen Pharmakologie, Bd XXXIII. Springer, Berlin Heidelberg New York, S 1–15

    Google Scholar 

  • Bräutigam M, Dreesen R, Flosbach C-W, Herken H (1982a) Mouse neuroblastoma clone N1E-115: a suitable model for studying the action of dopamine agonists on tyrosine hydroxylase activity. Biochem Pharmacol 31:1279–1282

    Google Scholar 

  • Bräutigam M, Dreesen R, Herken H (1982b) DOPA-release from mouse neuroblastoma clone N1E-115 into the culture medium — a test for tyrosine hydroxylase activity. Naunyn-Schmiedeberg's Arch Pharmacol 320:85–89

    Google Scholar 

  • Bunney BS, Aghajanian GK (1975) Evidence for drug actions on both pre-and postsynaptic catecholamine receptors in the CNS. In: Usdin E, Bunney WE (eds) Pre- and postsynaptic receptors. Marcel Dekker Inc, New York, pp 89–122

    Google Scholar 

  • Carlsson A (1959) Detection and assay of dopamine. Pharmacol Rev 11:300–304

    Google Scholar 

  • Carlsson A (1964) Functional significance of drug-induced changes in brain monoamine levels. Progr Brain Res 8:9–27

    Google Scholar 

  • Carlsson A (1975) Receptor-mediated control of dopamine metabolism. In: Usdin E, Bunney WE (eds) Pre- and postsynaptic receptors. Marcel Dekker Inc, New York, pp 49–65

    Google Scholar 

  • Ciaranello RD, Hoffman HJ, Shire JGM, Axelrod J (1974) Genetic regulation of the catecholamine biosynthetic enzymes. II. Inheritance of tyrosine hydroxylase, dopamine-β-hydroxylase, and phenylethanolamine N-methyltransferase. J Biol Chem 249:4528–4536

    Google Scholar 

  • Demis DJ, Blaschko H, Welch AD (1956) The conversion of dihydroxyphenylalanine-2-C14 (DOPA) to norepinephrine by bovine adrenal medullary homogenates. J Pharmacol Exp Ther 117:208–212

    Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wochenschr 38:1236–1239

    Google Scholar 

  • Euler US v (1972) Synthesis, uptake and storage of catecholamines in adrenergic nerves. The effects of drugs. In: Blaschko H, Muscholl E (eds) Catecholamines. Handbuch der experimentellen Pharmakologie, Bd. XXXIII. Springer, Berlin Heidelberg New York, S 186–230

    Google Scholar 

  • Fedoroff S, Hertz L (eds) (1977) Cell, tissue, and organ cultures in neurobiology, Academic Press, New York San Francisco London

    Google Scholar 

  • Felice LJ, Bruntlett CS, Shoup RE, Kissinger PT (1979) Measurements of catecholamines and their metabolites in tissue and physiological fluids using reverse-phase liquid chromatography with electrochemical detection. Proc 9th Materials Research Symposium Trace Organic Analysis, Natl Bureau of Standards Special Publication, 391–397

  • Felice LJ, Felice JD, Kissinger PT (1978) Determination of catecholamines in rat brain by reverse-phase ion-pair liquid chromatography. J Neurochem 31:1461–1465

    Google Scholar 

  • Goldstein M, Freedman LS, Backstrom T (1970) The inhibition of catecholamine biosynthesis by apomorphine. J Pharm Pharmacol 22:715–717

    Google Scholar 

  • Greene LA, Rein G (1977a) Release, storage and uptake of catecholamines by a clonal cell line of nerve growth factor (NGF) responsive pheochromocytoma cells. Brain Res 129:247–263

    Google Scholar 

  • Greene LA, Rein G (1977b) Dopaminergic properties of a somatic cell hybrid line of mouse neuroblastoma X sympathetic ganglion cells. J Neurochem 29:141–150

    Google Scholar 

  • Greene LA, Shooter EM (1980) The nerve growth factor: Biochemistry, synthesis, and mechanism of action. Ann Rev Neurosci 3:353–402

    Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to NGF. Proc Natl Acad Sci USA 73:2424–2428

    Google Scholar 

  • Halbhübner K, Herken H, Loos D (1978) Experimental neuropathy with Parkinson-like muscular rigidity. A suitable model for testing dopaminergic agonists and neuroleptic drugs. Arzneim-Forsch 28:1743–1752

    Google Scholar 

  • Hamprecht B (1976) Neuronenmodelle. Angew Chem 88:211–223

    Google Scholar 

  • Hamprecht B (1977) Structural, electrophysiological, biochemical, and pharmacological properties of neuroblastomaglioma cell hybrids in cell culture. In: Borne GH, Danielli JF (eds) International review of cytology, Bd 49. Academic Press, New York London San Francisco, pp 99–170

    Google Scholar 

  • Harper GP, Thoenen H (1981) Target cells, biological effects, and mechanisms of action of nerve growth factor and its antibodies. Ann Rev Pharmacol Toxicol 21:205–229

    Google Scholar 

  • Hayaishi O, Shimizu T (1980) Prostaglandin D2, neuromodulator. In: Koike M, Nagatsu T, Okuda J, Ozawa T (eds) New horizons in biological chemistry. Japan Scientific Societies Press, Tokyo, S 217–229

    Google Scholar 

  • Helson L, Johnson GA, Smith R (1980) DOPA metabolism in neuroblastoma. Med Ped Oncol 8:317–322

    Google Scholar 

  • Henn FA (1980) Separation of neuronal and glial cells and subcellular constituents. In: Fedoroff S, Hertz L (eds) Advances in cellular neurobiology, Bd 1. Academic Press, New York London Toronto Sydney San Francisco, pp 373–403

    Google Scholar 

  • Herken H (1980) Neuropharmakologische Grundlagenforschung an clonalen Nervenzellinien in der Kultur. Vortrag Deutsche Akademie der Naturforscher Leopoldina Halle am 21.10.1980. Mitt Akademie Leopoldina (im Druck)

  • Herken H (1981) Die Verwendung adrenerger Zellinien in der neurobiologischen Forschung. Vortrag auf dem Symposium Fortschritte der Methoden — Neue Anwendungen der Deutschen Akademie der Naturforscher Leopoldina, Halle am 1.12.1981. Nova acta Leopoldina (im Druck)

  • Herken H, Keller K, Kolbe H, Lange K, Schneider H (1973) Experimentelle Myelopathie — Biochemische Grundlagen ihrer cellulären Pathogenese. Klin Wochenschr 51:644–657

    Google Scholar 

  • Herken H, Meyer-Estorf G, Halbhübner K, Loos D (1976) Spastic paresis after 6-aminonicotinamide: Metabolic disorders in the spinal cord and electromyographically recorded changes in the hind limbs of rats. Naunyn-Schmiedeberg's Arch Pharmacol 293:245–255

    Google Scholar 

  • Herrup K, Thoenen H (1979) Properties of the nerve growth factor receptor of a clonal line of rat pheochromocytoma (PC 12) cells. Exp Cell Res 121:71–78

    Google Scholar 

  • Hoeldtke R, Kaufman S (1977) Bovine adrenal tyrosine hydroxylase. Purification and properties. J Biol Chem 252:3160–3169

    Google Scholar 

  • Hollenbeck RA, Chuang DM, Costa F (1979) Translocation of cytosol protein kinase into nuclci and the induction of tyrosine hydroxylase in NBD-2 neuroblastoma cells. Brain Res 171:481–487

    Google Scholar 

  • Holtz P (1939) Dopadecarboxylase. Naturwiss 27:724–727

    Google Scholar 

  • Kebabian JW (1978) Multiple classes of dopamine receptors in mammalian central nervous system: The involvement of dopamine-sensitive adenylyl cyclase. Life Sci 23:479–484

    Google Scholar 

  • Kehr W (1979) Über die Regulation der Dopaminsynthese und-freisetzung im Gehirn der Ratte. Habilitationsschr FB 3 Universitätsklinikum Charlottenburg, Freie Univ Berlin

  • Kehr W, Halbhübner K, Loos D, Herken H (1978) Impaired dopamine function and muscular rigidity induced by 6-aminonicotinamide in rats. Naunyn-Schmiedeberg's Arch Pharmacol 304:317–319

    Google Scholar 

  • Keller K, Kolbe H, Lange K, Herken H (1972) Behaviour of the glycolytic system of rat brain and kidney in vivo after inhibition of the glucosephosphate isomerase. II. Substrate concentrations under the influence of ischemia, 6-amino-nicotinamide, and 2-deoxyglucose. Hoppe-Seyler's Z Physiol Chem 353:1389–1400

    Google Scholar 

  • Keller K, Lange K, Noske W (1981) D-glucose transport in cultured cells of neural origin: The membrane as possible control point of glucose utilization. J Neurochem 36:1012–1017

    Google Scholar 

  • Kissinger PT, Refshauge C, Dreiling R, Adams RN (1973) An electrochemical detector for liquid chromatography with picogram sensitivity. Anal Lett 6:465–477

    Google Scholar 

  • Kissinger PT, Riggin RM, Alcorn RL, Rau LD (1975) Estimation of catecholamines in urine by high performance liquid chromatography with electrochemical detection. Biochem Med 13:299–306

    Google Scholar 

  • Kolbe H, Keller K, Lange K, Herken H (1976) Metabolic consequences of drug-induced inhibition of the pentose phosphate pathway in neuroblastoma and glioma cells. Biochem Biophys Res Commun 73:378–382

    Google Scholar 

  • Kolbe H, Keller K, Lange K, Herken H (1977) Glucose metabolism in C-1300 neuroblastoma cells after inhibition of hexose monophosphate pathway. Naunyn-Schmiedeberg's Arch Pharmacol 296:123–130

    Google Scholar 

  • Landreth GE, Shooter EM (1980) Nerve growth factor receptors on PC 12 cells: ligand-induced conversion from low-to high-affinity states. Proc Natl Acad Sci USA 77:4751–4755

    Google Scholar 

  • Lange K, Keller K, Herken H (1980) Glucose transport in cells of the nervous system. Neurochem Int 2:327–335

    Google Scholar 

  • Langley JN, Dickinson WL (1889) On the local paralysis of peripheral ganglia and on the connection of different classes of nerve fibres with them. Proc Roy Soc (London) 46:423–431

    Google Scholar 

  • Levi-Montalcini R (1966) The nerve growth factor, its mode of action on sensory and sympathetic nerve cells. Harvey Lect 60:217–259

    Google Scholar 

  • Levi-Montalcini R (1976) The nerve growth factor: Its role in growth, differentiation and function of the sympathetic adrenergic neurons. Progr Brain Res 45:235–256

    Google Scholar 

  • Levi-Montalcini R, Angeletti PU (1966) Immunosympathectomy. Pharmacol Rev 18:619–628

    Google Scholar 

  • Levi-Montalcini R, Angeletti PU (1968) Nerve growth factor. Physiol Rev 48:534–569

    Google Scholar 

  • Levitt M, Spector S, Sjoerdsma A, Udenfriend S (1965) Elucidation of the rate-limiting step in norepinephrine biosynthesis in the perfused guinea-pig heart. J Pharmacol Exp Ther 148:1–8

    Google Scholar 

  • Loos D, Halbhübner K, Herken H (1977) Lisuride, a potent drug in the treatment of muscular rigidity in rats. Naunyn-Schmiedeberg's Arch Pharmacol 300:195–198

    Google Scholar 

  • Loos D, Halbhübner K, Kehr W, Herken H (1979) Action of dopamine agonists on Parkinson-like muscle rigidity induced by 6-aminonicotinamide. Neurosci 4:667–676

    Google Scholar 

  • Mandel P, Ciesielski-Treska J, Sensenbrenner M (1976) Neurons in vitro. In: Gispen WH (ed) Molecular and functional neurobiology. Elsevier, Amsterdam, pp 112–157

    Google Scholar 

  • Markey KA, Kondo S, Shenkman L, Goldstein M (1980) Purification and characterization of tyrosine hydroxylase from a clonal phcochromocytoma cell line. Molec Pharmacol 17:79–85

    Google Scholar 

  • Maruyama Y, Oshima T, Nakajima E (1980) Simultaneous determination of catecholamines in rat brain by reversed-phase liquid chromatography with electrochemical detection. Life Sci 26:1115–1120

    Google Scholar 

  • Mefford IN (1981) Application of high performance liquid chromatography with electrochemical detection to neurochemical analysis: Measurement of catecholamines, serotonin and metabolites in rat brain. J Neurosci Methods 3:207–224

    Google Scholar 

  • Minna J, Glazer D, Nirenberg M (1971) Genes for neuronal properties expressed in neuroblastoma x L cell hybrids. Proc Natl Acad Sci USA 68:234–239

    Google Scholar 

  • Molnar I, Horvath C (1976) Reverse-phase chromatography of polar biological substances.: Separation of catechol compounds by high-performance liquid chromatography. Clin Chem 22:1497–1502

    Google Scholar 

  • Nelson P, Ruffner W, Nirenberg M (1969) Neuronal tumor cells with excitable membranes grown in vitro. Proc Natl Acad Sci USA 64:1004–1010

    Google Scholar 

  • Prasad KN (1975) Differentiation of neuroblastoma cells in culture. Biol Rev 50:129–165

    Google Scholar 

  • Prasad KN (1980) Control mechanisms of malignancy and differentiation on cultures of nerve cells. In: Evans AE (ed) Advances in neuroblastoma research. Progress in cancer research and therapy, Vol 12. Raven Press, New York, pp 135–144

    Google Scholar 

  • Ramon y Cajal S (1935) Die Neuronenlehre (Translation from the Spanish by Miskolczy D) In: Bumke O, Foerster O (Hrsg) Handbuch der Neurologie, Bd 1: Allgemeine Neurologie, I. Anatomie, Springer, Berlin, S 887–994

    Google Scholar 

  • Sato G (Ed) (1973) Tissue culture of the nervous system. Current topics in neurobiology Vol 1, Plenum Press, New York London

    Google Scholar 

  • Schechter AL, Bothwell MA (1981) Nerve growth factor receptors in PC 12 cells: Evidence for two receptor classes with differing cytoskeletal association. Cell 24:867–874

    Google Scholar 

  • Schmiedeberg O (1870) Untersuchung über einige Giftwirkungen am Froschherzen. Ber Verh kgl sächs Ges Wiss Leipzig Math-Phys Klasse 22:130–141

    Google Scholar 

  • Schubert D, Humphreys S, de Vitry F, Jacob F (1971) Induced differentiation of a neuroblastoma. Dev Biol 25:514–546

    Google Scholar 

  • Schubert D, Jacob F (1970) 5-Bromodeoxyuridine-induced differentiation of a neuroblastoma. Proc Natl Acad Sci USA 67:247–254

    Google Scholar 

  • Seeds NW, Gilman AG, Amano T, Nirenberg MW (1970) Regulation of axon formation by clonal lines of a neural tumor. Proc Natl Acad Sci USA 66:160–167

    Google Scholar 

  • Sherrington CS (1906) The integrative action of the nervous system. Yale Univ Press, New Haven London

    Google Scholar 

  • Shimizu T, Mizuno N, Amano T, Hayaishi O (1979) Prostaglandin D2, a neuromodulator. Proc Natl Acad Sci USA 76:6231–6234

    Google Scholar 

  • Starke K (1978) Presynaptic regulation of release in the central nervous system. In: Paton DM (ed) The release of catecholamines from adrenergic neurons. Pergamon Press, Oxford New York, pp 143–183

    Google Scholar 

  • Sugden PH, Holladay LA, Reimann EM, Corbin JD (1976) Purification and characterization of the catalytic subunit of adenosine 3′:5′-cyclic monophosphate-dependent protein kinase from bovine liver. Biochem J 159:409–422

    Google Scholar 

  • Udenfriend S (1966) Tyrosine hydroxylase. Pharmacol Rev 18:43–51

    Google Scholar 

  • Varon S (1977) Neural cell isolation and identification. In: Fedoroff S, Hertz L (eds) Cell, tissue, and organ cultures in neurobiology. Academic Press, New York San Francisco London, pp 237–261

    Google Scholar 

  • Varon S, Manthorpe M (1980) Separation of neurons and glial cells by affinity methods. In: Fedoroff S, Hertz L (eds) Advances in cellular neurobiology, Vol 1. Academic Press, New York London Toronto Sydney San Francisco, pp 405–442

    Google Scholar 

  • Vulliet PR, Langan TA, Weiner N (1980) Tyrosine hydroxylase: A substrate of cyclic AMP-dependent protein kinase. Proc Natl Acad Sci USA 77:92–96

    Google Scholar 

  • Waymire JC, Gilmer-Waymire K (1978) Adrenergic enzymes in cultured mouse neuroblastoma: Absence of detectable aromatic-L-amino-acid decarboxylase. J Neurochem 31:693–698

    Google Scholar 

  • Weiner N, Lee FL, Barnes E, Dreyer E (1977) In: Usdin E, Weiner N, Youdim MBH (eds) Structure and function of monoamine enzymes. Marcel Dekker Inc, New York, pp 109–148

    Google Scholar 

  • Weiner N, Lee FL, Dreyer E, Barnes E (1978) Activation of tyrosine hydroxylase in noradrenergic neurons during acute nerve stimulation. Life Sci 22:1197–1215

    Google Scholar 

  • Yankner BA, Shooter EM (1979) Nerve growth factor in the nucleus: interactions with receptors in the nuclear membrane. Proc Natl Acad Sci USA 76:1269–1273

    Google Scholar 

  • Zeitz M, Lange K, Keller K, Herken H (1978) Effects of 6-aminonicotinamide on growth and acetylcholinesterase activity during differentiation of neuroblastoma cells in vitro. Naunyn-Schmiedeberg's Arch Pharmacol 305:117–121

    Google Scholar 

  • Zeitz M, Lange K, Keller K, Herken H (1980a) Distribution of acridine orange accumulating particles in neuroblastoma cells during differentiation and their characterization by subcellular fractionation and electron microscopy. Cell Mol Biol 25:305–314

    Google Scholar 

  • Zeitz M, Lange K, Noske W, Keller K, Herken H (1980b) Further studies on the nature of red fluorescent structures in neuroblastoma monolayer cells vitally stained with acridine orange. Naunyn-Schmiedeberg's Arch Pharmacol 311:53–59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herken, H. Clonale Nervenzellinien in der Kultur — Modelle zum Studium molekularer Grundlagen neuropharmakologischer Wirkungen. Klin Wochenschr 61, 1–16 (1983). https://doi.org/10.1007/BF01484434

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01484434

Key words

Navigation