Skip to main content
Log in

Die Beziehungen zwischen intracellulärem osmotischen Druck und cellulärem Wasserwechsel

  • Übersichten
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Adolph, E. F.: Water metabolism. Ann. Rev. Physiol.9, 381 (1947).

    Google Scholar 

  • Adolph, E. F., andJ. Richmond: Water exchange of isolated mammalian tissue at low temperatures. J. Physiol. (Lond.)187, 437 (1956).

    Google Scholar 

  • Aebi, H.: Kationenmilieu und Gewebsatmung. Helv. physiol. pharmacol. Acta8, 525 (1950);

    Google Scholar 

  • Zusammenhänge zwischen Atmung, Quellung und Elektrolytgehalt überlebender Gewebsschnitte. Helv. physiol. pharmacol. Acta10, 184 (1952);

    Google Scholar 

  • Elektrolyt-Akkumulierung und Osmoregulation in Gewebsschnitten. Helv. physiol. pharmacol. Acta11, 96 (1953).

    Google Scholar 

  • Ahrens, K.: The „active“ membrane. Rev. canad. Biol.8, 157 (1949).

    Google Scholar 

  • Appelboom, J. W. T., W. A. Brodsky, W. S. Tuttle andI. Diamond: The freezing point depression of mammalian tissues after sudden heating in boiled distilled water. J. gen. Physiol.41, 1153 (1958).

    Google Scholar 

  • Bartley, W., R. E. Davies andH. A. Krebs: Active transport in animal tissue. Proc. roy. Soc. B142, 187 (1954).

    Google Scholar 

  • Berliner, R. W.: Renal secretion of potassium and hydrogen ions. Fed. Proc.11, 695 (1952).

    Google Scholar 

  • Berliner, R. W., T. J. Kennedy andL. Orloff: Relationship between acidification of the urine and potassium metabolism. Amer. J. Med.11, 274 (1951);

    Google Scholar 

  • Factors affecting the transport of potassium and hydrogen ions by the renal tubules. Arch. int. Pharmacodyn.97, 299 (1954).

    Google Scholar 

  • Boatman, J. B., andP. A. Pisarcik: Temperature and salt effects on water and electrolyte metabolism of thyroid slices. Amer. J. Physiol.200, 465 (1961).

    Google Scholar 

  • Bozler, E., M. E. Calvin andD. W. Watson: Exchange of electrolytes in smooth muscle. Amer. J. Physiol.195, 38 (1958).

    Google Scholar 

  • Breuer, H.: Beziehungen zwischen Elektrolytgehalt und Stoffwechsel im Uterus der Maus. Hoppe-Seylers Z. physiol. Chem.318, 179 (1960).

    Google Scholar 

  • Breuer, H. J., andR. Whittam: Ion movements in seminal vesicle mucosa. J. Physiol. (Lond.)135, 213 (1957).

    Google Scholar 

  • Brodsky, W. A., J. W. Appelboom, W. H. Dennis, W. S. Rehm, J. F. Miley andI. Diamond: The freezing point depression of mammalian tissues in relation to the question of osmotic activity of cell fluid. J. gen. Physiol.40, 183 (1956).

    Google Scholar 

  • Broome, J. D., andE. L. Opie: The movement of electrolytes and of water in surviving tissue of the liver. J. exp. Med.112, 491 (1960).

    Google Scholar 

  • Burck, H. C.: Zum osmotischen Verhalten überlebender Schnitte von normalen, entzündeten und mit Butazolidin behandelten Rattenlebern. Diss. Kiel 1958;

  • Tissue slices, incubation fluid, electrolyte content, and water balance. In: Membrane Transport and Metabolism. Ed.A. Kleinzeller andA. Kotyk. Publ. House Czechosl. Acad. Sci., Prag 1960, S. 579;

    Google Scholar 

  • Die Zellschwellung als Folge des passiven Wasserwechsels. 1962 (im Druck);

  • Zur Frage des Wassertransportes der Zelle. Verh. dtsch. Ges. Path.46 (1962) (im Druck).

  • Burck, H. C., u.H. Netter: Das osmotische Verhalten als Kriterium für den Funktionszustand von Leberschnitten. Klin. Wschr.38, 359 (1960).

    Google Scholar 

  • Conway, E. J.: Nature and significance of concentration relations of potassium and sodium ions in skeletal muscle. Physiol. Rev.37, 84 (1957).

    Google Scholar 

  • Conway, E. J., andO. Fitzgerald: Diffusion relations of urea, inulin and chloride in some mammalian tissues. J. Physiol. (Lond.)101, 86 (1942).

    Google Scholar 

  • Conway, E. J., andH. Geoghegan: Molecular concentration of kidney cortex slices. J. Physiol. (Lond.)130, 438 (1955).

    Google Scholar 

  • Conway, E. J., H. Geoghegan andJ. I. McCormack: Autolytic changes at zero centigrades in ground mammalian tissues. J. Physiol. (Lond.)130, 427 (1955).

    Google Scholar 

  • Conway, E. J., andJ. I. McCormack: The total intracellular concentration of mammalian tissues compared with that of the extracellular fluid. J. Physiol. (Lond.)120, 1 (1953).

    Google Scholar 

  • Cort, J. H., andA. Kleinzeller: The effect of denervation, pituitrin and varied cation concentration gradients on the transport of cations and water in kidney slices. J. Physiol. (Lond.)133, 287 (1956);

    Google Scholar 

  • Concerning the transport of alkali cations by kidney cortex slices. Biochim. biophys. Acta23, 321 (1957);

    Google Scholar 

  • The nervous regulation of active transport in the kidney. Communications of the Symposium on Nervous Regulation of Metabolism and Active Transport of Ions. Publ. House Czcchosl. Acad. Sci., Prag 1958, S. 93.

  • Curran, P. F., andJ. R. Macintosh: A model system for biological water transport. Nature (Lond.)193, 347 (1962).

    Google Scholar 

  • Danowski, T. S.: Newer concepts of the role of potassium in disease. Amer. J. Med.7, 525 (1949);

    Google Scholar 

  • Newer concepts of the role of sodium in disease. Amer. J. Med.10, 468 (1951).

    Google Scholar 

  • Deyrup, I.: Reversal of fluid uptake by rat kidney slices immersed in isosmotic solutions in vitro. Amer. J. Physiol.175, 349 (1953);

    Google Scholar 

  • Rat renal tissue water and electrolyte content in simple solutions in vitro. Amer. J. Physiol.188, 125 (1957).

    Google Scholar 

  • Drahota, Z., andO. Hudlicka: Changes in the metabolism of potassium in normal and denervated muscle during reduced oxygen supply. Physiol. bohemoslov.7, 489 (1958).

    Google Scholar 

  • Drahota, Z., R. Zak u.M. Klicpera: Veränderungen im isolierten Rattendiaphragma. Chem. Listy52, 1647 (1958) [Coll. Czechos. Chem. Commun.24, 2416 (1959)].

    Google Scholar 

  • Edelman, I. S., J. Leimann, M. P. O'Meara andL. W. Birkenfeld: Interrelations between serum sodium concentration, serum osmolarity and total exchangeable sodium, total exchangeable potassium and total body water. J. clin. Invest.37, 1236 (1958).

    Google Scholar 

  • Elkinton, J. R., andT. S. Danowski: The Body Fluids. London: Ballière, Tindall & Co. 1955.

    Google Scholar 

  • Elkinton, J. R., A. W. Winkler andT. S. Danowski: Inactive cell base and the measurements of changes in cell water. Yale J. biol. Med.17, 383 (1944).

    Google Scholar 

  • Elliott, K. A. C.: Swelling of brain slices and the permeability of brain cells to glucose. Proc. Soc. exp. Biol. (N.Y.)63, 234 (1946);

    Google Scholar 

  • The relation of ions to metabolism in brain. Canad. J. Biochem.33, 466 (1955).

    Google Scholar 

  • Filehne, W., u.H. Biberfeld: Beiträge zur Diurese. Pflügers Arch. ges. Physiol.91, 569 (1902).

    Google Scholar 

  • Foulkes, E. C.: Cation transport in yeast. J. gen. Physiol.39, 687 (1956).

    Google Scholar 

  • Frank, J., andJ. E. Meyer: Osmotic diffusion pump. Arch. Biochem.14, 297 (1947).

    Google Scholar 

  • Gaudino, M.: Water and electrolyte exchanges between excised rabbit tissue and plasma. Amer. J. Physiol.187, 75 (1956).

    Google Scholar 

  • Gömöri, P., andS. Frenreisz: The osmoregulation disturbance of tissue in hypochloraemic azotaemia. Acta med. scand.92, 497 (1937).

    Google Scholar 

  • Gömöri, P., u.S. Molnar: Die Störung der Osmoregulation der Gewebe bei der Wasservergiftung. Naunyn-Schmiedeberg's Arch. exp. Path. Pharmak.167, 459 (1932).

    Google Scholar 

  • Harris, E. J.: Linkage of sodium- and potassium-active transport in human erythrocytes. Symp. Soc. exp. Biol.8, 228 (1954);

    Google Scholar 

  • Transport through biological membranes. Ann. Rev. Physiol.19, 13 (1957).

    Google Scholar 

  • Permeation and diffusion of potassium in frog muscle. J. gen. Physiol.41, 169 (1957).

    Google Scholar 

  • Hastings, A. B., andL. Eichelberger: The exchange of salt and water between muscle and blood. J. biol. Chem.117, 73 (1937).

    Google Scholar 

  • Heckmann, K. D., andD. S. Parsons: Changes in the water and electrolyte content of rat-liver slices in vitro. Biochim. biophys. Acta36, 203 (1959).

    Google Scholar 

  • Hodgkin, A. L., andR. D. Keynes: Active transport of cations in giant axons from sepia and loligo. J. Physiol. (Lond.)128, 28 (1955).

    Google Scholar 

  • Holzlöhner, E., u.F. Seelich: Zur Frage der Sekretionsarbeit. Klin. Wschr.17, 1169 (1938).

    Google Scholar 

  • Hutton, W. E.: Ionic exchange and the structure and function, including motility, of cytoplasmic membranes. Nature (Lond.)185, 439 (1960).

    Google Scholar 

  • Kao, C. Y.: Contents and distribution of potassium, sodium and chloride in uterine smooth muscle. Amer. J. Physiol.201, 717 (1961).

    Google Scholar 

  • Keller, H., u.H. Blennemann: Modell aktiver Transportleistung mit enzymatischer Steuerung der Energie-transformation aus ATP. Hoppe-Seyler's Z. physiol. Chem.324, 138 (1961).

    Google Scholar 

  • Klotz, I. M.: Trends in Physiology and Biochemistry. Ed.E. S. Barron. New York: Academic Press 1952.

    Google Scholar 

  • Kuhn, W., u.H. Majer: Durch Netzstruktur bedingte anomale Gefrierpunktserniedrigung von Gelen. Ric. sci., Suppl.25, 1 (1955);

    Google Scholar 

  • Ungleichheit des Gefrierpunktes isotonischer Systeme. Z. phys. Chem., N.F.3, 330 (1955);

    Google Scholar 

  • Normale und anomale Gefrierpunktserniedrigung. Angew. Chem.68, 345 (1956).

    Google Scholar 

  • Leaf, A.: On the mechanism of fluid exchange of tissue in vitro. Biochem. J.62, 241 (1956).

    Google Scholar 

  • Leövey, F., u.E. Kerpel-Fronius: Über die Störung der Osmoregulation bei der experimentellen Urämie. Naunyn-Schmiedeberg's Arch. exp. Path. Pharmak.159, 236 (1931).

    Google Scholar 

  • Ling, G. N.: The role of phosphate in the maintenance of the resting potential and selective ion accumulation in frog muscle cells. In: Phosphorus and Metabolism. Ed.W. D. McElroy andB. Glass. p. 748. Baltimore: Johns Hopkins Press 1952;

    Google Scholar 

  • Muscle electrolytes. Amer. J. phys. Med.34, 89 (1955).

    Google Scholar 

  • Maffly, R. H., andA. Leaf: The potential of water in mammalian tissues. J. gen. Physiol.42, 1257 (1959).

    Google Scholar 

  • McLennan, H.: The diffusion of potassium, inulin, and thiocyanate in the extracellular spaces of mammalian muscle. Biochim. biophys. Acta21, 472 (1956).

    Google Scholar 

  • Meryman, H. T.: Mechanics of freezing in living cells and tissues. Science124, 515 (1956).

    Google Scholar 

  • Miller, D. M.: The osmotic pump theory of selective transport. Biochim. biophys. Acta37, 448 (1960).

    Google Scholar 

  • Monne, L.: Functioning of the cytoplama. Advanc. Enzymol.8, 1 (1948).

    Google Scholar 

  • Mudge, G. H.: Studies on potassium accumulation by rabbit kidney slices: effect of metabolic activity. Amer. J. Physiol.165, 113 (1951);

    Google Scholar 

  • Electrolyte and water metabolism of rabbit kidney slices: effect of metabolic inhibitors. Amer. J. Physiol.167, 206 (1951);

    Google Scholar 

  • Electrolyte metabolism of rabbit-kidney slices: studies with radioactive potassium and sodium. Amer. J. Physiol.173, 511 (1953).

    Google Scholar 

  • Netter, H.: Theoretische Biochemie. Berlin-Göttingen-Heidelberg: Springer 1959;

    Google Scholar 

  • Mögliche Mechanismen und Modelle für aktive Transportvorgänge. Biochemie des aktiven Transportes, S. 15ff. (12. Colloquium Ges. Physiol. Chem., Moosbach.) Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  • Neunhoeffer, O., u.B. Kabot: Osmotisch nicht wirksame Kaliumionen in Gegenwart von Humanalbumin. Naturwissenschaften44, 261 (1957).

    Google Scholar 

  • Opie, E. L.: The movement of water in tissues removed from the body and its relation to the movement of water during life. J. exp. Med.89, 185 (1949);

    Google Scholar 

  • Osmotic activity of liver cells and melting point of liver. J. exp. Med.99, 29 (1954);

    Google Scholar 

  • Osmotic activity in relation to the movement of water under normal and pathological conditions. Harvey Lect. Ser.50, 292 (1954/55);

    Google Scholar 

  • Changes caused by injurious agents in the permeability of surviving cells of liver and of kidney. J. exp. Med.104, 897 (1956);

    Google Scholar 

  • Isotonicity of liver and of kidney tissue in solutions of electrolytes. J. exp. Med.110, 103 (1959);

    Google Scholar 

  • The relation of urea to the movement of water in liver tissue. Proc. nat. Acad. Sci. (Wash.)46, 477 (1960);

    Google Scholar 

  • The relation of oxygen supply to water movement and to urea formation in surviving liver tissue. J. exp. Med.113, 339 (1961);

    Google Scholar 

  • The effect of varied oxygen supply and of food intake to water movement in surviving liver tissue. J. exp. Med.113, 353 (1961).

    Google Scholar 

  • Opie, E. L., andM. B. Rothbard: Osmotic homeostasis maintained by mammalian liver, kidney and other tissue. J. exp. Med.97, 483 (1953).

    Google Scholar 

  • Pappius, H. M., andK. A. C. Elliott: Factors affecting the potassium content of incubated brain slices. Canad. J. Biochem.34, 1053 (1956).

    Google Scholar 

  • Parry, A. A.: The initial swelling of excised muscle in fluid media. J. cell. comp. Physiol.8, 277 (1936).

    Google Scholar 

  • Pichotka, J.: Untersuchungen über Gefricrpunkte des lebenden Gewebes. Z. Biol.105, 181 (1952).

    Google Scholar 

  • Pichotka, J., W. Höfler u.J. Reissner: Untersuchungen über die Wasserbindung in organischen Systemen. Naunyn-Schmiedeberg's Arch. exp. Path. Pharmak.223, 217 (1954).

    Google Scholar 

  • Post, R. L., C. R. Merritt, C. R. Kissolving andC. D. Albright: Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in human erythrocytes. J. biol. Chem.253, 1796 (1960).

    Google Scholar 

  • Rixon, R. H., andJ. A. F. Stevenson: The water and electrolyte metabolism of rat diaphragm in vitro. Canad. J. Biochem.34, 1069 (1956);

    Google Scholar 

  • The effect of tonicity and metabolism of the electrolytes and water of rat diaphragma in vitro. Quart. J. exp. Physiol.42, 346 (1957);

    Google Scholar 

  • Movements of sodium, potassium and water in rat diaphragm in vitro. Amer. J. Physiol.194, 363 (1958).

    Google Scholar 

  • Robinson, J. R.: Osmoregulation in surviving slices from the kidney of adult rats. Proc. roy. Soc. B137, 378 (1950);

    Google Scholar 

  • Effect of 2,4-Dinitrophenol on osmoregulation in isolated kidney slices. Nature (Lond.)166, 989 (1950);

    Google Scholar 

  • Osmoregulation in surviving slices from the liver of adult rats. Proc. roy. Soc. B140, 135 (1952);

    Google Scholar 

  • Total concentration of fixed base in cells of the renal cortex of the rat. Nature (Lond.)169, 713 (1952);

    Google Scholar 

  • The active transport of water in living systems. Biol. Rev.28, 158 (1953);

    Google Scholar 

  • The recovery of kidney slices from anoxia in different media. J. Physiol. (Lond.)136, 585 (1957).

    Google Scholar 

  • Rosenberg, T.: On accumulation and active transport in biological systems. Acta chem. scand.2, 14 (1948).

    Google Scholar 

  • Sabbatani, L.: Détermination du point de congélation des organes animaux. J. Physiol. Path. gén.3, 939 (1901).

    Google Scholar 

  • Schlögl, R.: Anomale Osmose. Z. phys. Chem., N. F.3, 73 (1955).

    Google Scholar 

  • Shaw, F. H., andS. Simon: The nature of the sodium and potassium balance in nerve muscle cells. Aust. J. exp. Biol. med. Sci.33, 153 (1955).

    Google Scholar 

  • Shear, M. J., andL. C. Fogg: Volume changes of tumor cells in vitro. Publ. Hlth Rep. U.S. Treasury Dept.49, 225 (1934).

    Google Scholar 

  • Sperry, W. M., andC. F. Brand: Absorption of water by liver slices from „physiological“ saline solutions. Proc. Soc. exp. Biol. (N.Y.)42, 147 (1939).

    Google Scholar 

  • Stanbury, S. W., andG. H. Mudge: Potassium metabolism of liver mitochondria. Proc. Soc. exp. Biol. (N.Y.)82, 675 (1953).

    Google Scholar 

  • Stern, J. R., L. V. Eggleston, R. Hems andH. A. Krebs: Accumulation of glutamic acid in isolated brain tissue. Biochem. J.44, 410 (1949).

    Google Scholar 

  • Stone, D., andD. Shapiro: Investigation of free and bound potassium in rat brain and muscle. Amer. J. Physiol.155, 141 (1948).

    Google Scholar 

  • Swan, A. G., andA. T. Miller jr.: Osmotic regulation in isolated liver and kidney slices. Amer. J. Physiol.199, 1227 (1960).

    Google Scholar 

  • Teorell, T.: On oscillatory transport of fluid across membranes. Acta Soc. Med. upsalien.62, 60 (1957).

    Google Scholar 

  • Terner, C., L. V. Eggleston andH. A. Krebs: The role of glutamic acid in the transport of potassium in brain and retina. Biochem. J.47, 139 (1950).

    Google Scholar 

  • Ullrich, K. J., F. O. Drenckhahn u.K. H. Jarausch: Untersuchungen zum Problem der Harnkonzentrierung und -verdünnung. Über das osmotische Verhalten von Nierenzellen und die begleitende Elektrolytanhäufung im Nierengewebe bei verschiedenen Diuresezuständen. Pflügers Arch. ges. Physiol.261, 62 (1955).

    Google Scholar 

  • Ussing, H. H.: Transport of ions across cell membranes. Physiol. Rev.29, 127 (1949);

    Google Scholar 

  • Ion transport across biological membranes. In: Ion Transport across Membranes, S. 3ff. Ed.H. T. Clarke. New York: Academic Press 1954;

    Google Scholar 

  • Ionic movement in cell membranes in relation to the activity of the nervous system. IV. Intern. Congr. Biochem., Symp. No. III, Preprint 12, Wien 1958.

  • Wessberge, H.: Variations du poids subies par des encéphales d'oiseaux immergés dans des solutions salines. C. R. Soc. Biol. (Paris)74, 1398 (1913);

    Google Scholar 

  • Nouvelles recherches sur les variations du poids subies par des encéphales d'oiseaux, immergés dans des solutions de NaCl, de Kcl, de CaCl2 et de saccharose. C. R. Soc. Biol. (Paris)77, 70 (1914).

    Google Scholar 

  • Whittam, R., andR. E. Davies: Active transport of water, sodium, potassium and α-oxyglutarate by kidney cortex slices. Biochem. J.55, 880 (1953).

    Google Scholar 

  • Zierler, K. L.: Effect of potassium rich medium, of glucose and of transfer of tissue on oxygen consumption by rat diaphragm. Amer. J. Physiol.185, 12 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burck, HC. Die Beziehungen zwischen intracellulärem osmotischen Druck und cellulärem Wasserwechsel. Klin Wochenschr 40, 761–765 (1962). https://doi.org/10.1007/BF01481246

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01481246

Navigation