Skip to main content
Log in

Phosphate-hydroxyquinoline method for separation and volumetric determination of zirconium

  • Published:
The Soviet Journal of Atomic Energy Aims and scope

Abstract

The proposed method consists of a combination of the well-known phosphate method for separation of zirconium, and determination of zirconium as the hydroxyquinolate. The separation of zirconium hydroxyquinolate from an oxalate medium after solution of the phosphate preccipitate in oxalic acid has been used for the first time. The conditions of separation of zirconium from titanium and thorium in the phosphate precipitation, and from niobium and tantalum in precipitation of the hydroxyquinolate, have been studied. By this method it is possible to separate zirconium in practice from all accompanying elements (except hafnium), and to determine small amounts of zirconium (2–5 mg) by a volumetric method to an accuracy of ± 2–4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. W. Fresenius and G. Jander, Handbuch der Anal. Chemie. Quantitative Bestimmungsmethoden IVb, 170–287 (1950).

  2. C. H. Bailey, J. Chem. Soc. Trans. 49, 481 (1886).

    Article  Google Scholar 

  3. C. A. Kumins, Anal. Chem. 19, 376 (1947).

    Article  Google Scholar 

  4. A. Purushottam, S. V. Bhadur and Raghava Rao, Analyst 75, 684 (1950).

    Article  Google Scholar 

  5. P. S. Marty, S. V. Bhadur and Raghava Rao, Z. Anal. Chem. 141, 93–96 (1954).

    Article  Google Scholar 

  6. Tsuguo Sawaya and Masao Yamashita, J. Chem. Soc. Japan, Pure Chem. Sect. 72, 356 (1951).

    Google Scholar 

  7. D. Bezier, Chem. Anal. 36, 175 (1954).

    Google Scholar 

  8. T. A. Uspenskaya, E. I. Guldina and M. S. Zverkova, Factory Labs. 9, 142 (1940).

    Google Scholar 

  9. V. K. Zolotukhin, Trans. Voronezh State Univ. XI (Chemical Division), No. 2 (1939).

  10. Yu. A. Chernikhov and T. A. Uspenskaya, Factory Labs. 10, 248 (1941).

    Google Scholar 

  11. P. R. Subbaraman and K. S. Rajan, J. Sci. Ind. Research 13B, 31–34 (1954).

    Google Scholar 

  12. G. W. C. Milner and P. I. Phennah, Analyst 79, 475–82 (1954).

    Article  Google Scholar 

  13. Mulk Ray Verma and Sukh Deo Paul, Nature 173, 1237 (1954).

    Article  Google Scholar 

  14. P. Sue and G. Wetroff, Bull. Soc. Chem. France 2, 1002–1007 (1935).

    Google Scholar 

  15. Gr. Balanescu, Z. f. Anal. Chem. 101, 101 (1935).

    Article  Google Scholar 

  16. T. Kiba and T. Ikeda, J. Chem. Soc. Japan 60, 911 (1939).

    Google Scholar 

  17. J. Stachtchenko and Cl. Duval, Anal. Chim. Acta 5, 410 (1951).

    Article  Google Scholar 

  18. T. A. Portcastle, Chem. Age, No. 1764, 673 (1953).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinogradov, A.V., Shpinel, V.S. Phosphate-hydroxyquinoline method for separation and volumetric determination of zirconium. The Soviet Journal of Atomic Energy 3, 895–900 (1957). https://doi.org/10.1007/BF01480072

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01480072

Keywords

Navigation