Skip to main content
Log in

[3H]Dihydroergonine binding to α-adrenergic receptors in human platelets

Bindung von [3H]Dihydroergonin an α-adrenerge Rezeptoren in menschlichen Thrombozyten

  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Die Bindung von [3H]Dihydroergonin, einem potenten α-adrenergen Blocker in menschlichen Thrombozyten, wurde in intakten menschlichen Thrombozyten und Thrombozyten-Membranen untersucht. Die Bindung erreichte ihr Äquilibrium innerhalb von 10 min bei 25°C und war reversibel nach Zugabe eines Überschusses von Phentolamin. Die Geschwindigkeitskonstanten betrugen 0,31 min−1 für die Vorwärtsreaktion und 0,027 min−1 für die Rückwärtsreaktion, woraus eine Assoziationsgeschwindigkeitskonstante von 2,2×107 M−1 min−1 berechnet wurde. Die [3H]Dihydroergonin-Bindung erreichte Sättigung mit 220 fmol [3H]Dihydroergonin gebunden pro mg Membran-Protein und etwa 200 Bindungsstellen pro Thrombozyt. Äquilibriums-Untersuchungen ergaben eine einheitliche Population von Bindungsstellen ohne Anzeichen einer Kooperativität und eine Dissoziations-Konstante von 6 bis 7 nM. Die Bindung von [3H]Dihydroergonin zeigte alle typischen Charakteristika der Bindung an einen α-adrenergen Rezeptor and Stereoselektivität: Adrenerge Agonisten bzw. Antagonisten konkurrierten um die Bindungsstellen in der Potenzreihe: (1)-Adrenalin>(1)-Noradrenalin>(d)-Noradrenalin≫(1)-Isoprenalin bzw. Yohimbin>Dihydroergotamin>Phentolamin≫Tolazolin>Azapetin≫(1)-Propranolol>(1)-Pindolol.

Es wurde versucht, die Bindungsdaten verschiedener α-adrenerger Agonisten mit der Thrombozyten-Aggregation und der Hemmung der Adenylat-Cyclase zu korrelieren. Unter verschiedenen getesteten α-adrenergen Agonisten waren nur Adrenalin und Noradrenalin fähig, eine primäre Thrombozyten-Aggregation auszulösen und die Adenylat-Cyclase zu hemmen. Verschiedene andere Substanzen, die in anderen Systemen α-adrenerge Agonisten sind, verdrängten [3H)Dihydroergonin von seinen Bindungsstellen mit etwas geringeren Affinitäten als Adrenalin, so Phenylephrin und Methoxamin, oder mit weit höheren Affinitäten, so die Imidazoline Xylometazolin, Oxymetazolin, Naphazolin und Tetryzolin. Im Gegensatz zu Adrenalin und Noradrenalin waren diese Substanzen aber nicht fähig, eine primäre Thrombozyten-Aggregation (bis 1 mM) und eine Hemmung der Adenylat-Cyclase (bis 100 µM) zu induzieren. Die Ergebnisse zeigen, daß der thrombozytäre α-adrenerge Rezeptor sich nicht wesentlich von α-adrenergen Rezeptoren in anderen Systemen unterscheidet, was die Bindung von Substanzen an den Rezeptor angeht, daß aber nur ein limitiertes Spektrum von Substanzen fähig ist, über diesen Rezeptor biologische Antworten hervorzurufen.

Summary

Binding of [3H]dihydroergonine, a potent α-adrenergic blocking agent, was studied in intact human platelets and platelet membranes. The binding process reached equilibrium within 10 min at 25° C and was reversible upon addition of excess phentolamine with forward and reverse rate constants of 0.31 and 0.027 min−1, respectively, and with a second order association rate constant of 2.2×107 M−1 min−1. The [3H]dihydroergonine binding reached saturation with 220 fmol of [3H]dihydroergonine bound per mg of platelet membrane protein and about 200 binding sites per platelet. Equilibrium studies indicated a single population of binding sites with no apparent cooperativity and a dissociation constant of 6 to 7 nM. Binding of [3H]dihydroergonine showed all the typical characteristics of binding to an α-adrenergic receptor and stereoselectivity: Adrenergic agonists and antagonists competed for the binding sites with the following order of potency: (1)-adrenaline>(1)-noradrenaline>(d)-noradrenaline≫(1)-isoprenaline and yohimbine>dihydroergotamine>phentolamine≫tolazoline>azapetine≫(1)-propranolol>(1)-pindolol, respectively.

It was tried to correlate the binding data of various α-adrenergic agonists with platelet aggregation and inhibition of adenylate cyclase. Out of many α-adrenergic agonists tested, only adrenaline and noradrenaline were able to induce primary platelet aggregation and inhibition of adenylate cyclase. Various other compounds that are α-adrenergic agonists in other systems displaced [3H]dihydroergonine from its binding sites with somewhat lower affinities than adrenaline, e.g., phenylephrine and methoxamine, or with much higher affinities, e.g., the imidazolines, xylometazoline, oxymetazoline, naphazoline and tetryzolin. In contrast to adrenaline and noradrenaline, these compounds were unable to induce primary platelet aggregation (up to 1 mM) and inhibition of adenylate cyclase (up to 100 µM). These data indicate that the platelet α-adrenergic receptor does not greatly differ from α-adrenergic receptors found in other tissues with respect to binding of drugs to the receptor but that the platelet receptor is unique with regard to the limited spectrum of compounds that are capable of inducing biological responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Alexander, R.W., Cooper, B., Handin, R.I.: Characterization of the human platelet α-adrenergic receptor. Correlation of [3H]dihydroergocryptine binding with aggregation and adenylate cyclase inhibition. J. Clin. Invest.61, 1136–1144 (1978)

    Google Scholar 

  2. Berthelsen, S., Pettinger, W.A.: A functional basis for classification of α-adrenoceptors in various isolated tissues. Life Sci.20, 595–606 (1977)

    Google Scholar 

  3. Born, G.V.R.: Aggregation of human platelets by adenosine diphosphate and its reversal. Nature194, 927–929 (1962)

    Google Scholar 

  4. Bygdeman, S., Johnson, O.: Studies on the effect of adrenergic blocking agents on catecholamine induced platelet aggregation and uptake of noradrenaline and 5-hydroxytryptamine. Acta Physiol. Scand.75, 129–138 (1969)

    Google Scholar 

  5. Cheng, Y., Prusoff, W.: Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 percent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol.22, 3099–3108 (1973)

    Google Scholar 

  6. Cole, B., Robison, G.A., Hartmann, R.C.: Studies on the role of cyclic AMP in platelet function. Ann. N.Y. Acad. Sci.185, 477–487 (1971)

    Google Scholar 

  7. Greenberg, D.A., Snyder, S.H.: Pharmacological properties of [3H]dihydroergokryptine binding sites associated with alpha noradrenergic receptors in rat brain membranes. Mol. Pharmacol.14, 38–49 (1978)

    Google Scholar 

  8. Guellaen, G., Yates-Aggerbeck, M., Vauquelin, G., Strosberg, D., Hanoune, J.: Characterization with [3H]dihydroergocryptine of the α-adrenergic receptor of the hepatic plasma membrane. Comparison with the β-adrenergic receptor in normal and adrenalectomized rats. J. Biol. Chem.253, 1114–1120 (1978)

    Google Scholar 

  9. Harwood, J.P., Moskowitz, J., Krishna, G.: Dynamic interactions of prostaglandin and norepinephrine in the formation of adenosine 3′,5′-monophosphate in human and rabbit platelets. Biochim. Biophys. Acta261, 444–456 (1972)

    Google Scholar 

  10. Haslam, R.J., Taylor, A.: Effects of catecholamines on the formation of adenosine 3′:5′-cyclic monophosphate in human blood platelets. Biochem. J.125, 377–379 (1971)

    Google Scholar 

  11. Jakobs, K.H.: Synthetic α-adrenergic agonists are potent α-adrenergic blockers in human platelets. Nature274, 819–820 (1978)

    Google Scholar 

  12. Jakobs, K.H., Saur, W., Schultz, G.: Reduction of adenylate cyclase activity in lysates of human platelets by the alpha-adrenergic component of epinephrine. J. Cycl. Nucl. Res.2, 381–392 (1976)

    Google Scholar 

  13. Jakobs, K.H., Saur, W., Schultz, G.: Inhibition of platelet adenylate cyclase by epinephrine requires GTP. FEBS Lett.85, 167–170 (1978a)

    Google Scholar 

  14. Jakobs, K.H., Saur, W., Schultz, G.: Characterization of α- and β-adrenergic receptors linked to human platelet adenylate cyclase. Naunyn-Schmiedeberg's Arch. Pharmacol.302, 285–291 (1978b)

    Google Scholar 

  15. Kafka, M.S., Tallmann, J.F., Smith, C.C.: Alpha-adrenergic receptors in human platelets. Life Sci.21, 1429–1438 (1977)

    Google Scholar 

  16. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem.193, 265–275 (1951)

    Google Scholar 

  17. Marquis, N.R., Becker, J.A., Vigdahl, R.L.: Platelet aggregation. III. An epinephrine induced decrease in cyclic AMP synthesis. Biochem Biophys. Res. Commun.39, 783–789 (1970)

    Google Scholar 

  18. Mills, D.C.B., Roberts, G.C.K.: Effects of adrenaline on human blood platelets. J. Physiol.193, 443–453 (1967)

    Google Scholar 

  19. Newman, K.D., Williams, L.T., Bishopric, N.H., Lefkowitz, R.J.: Identification of α-adrenergic receptors in human platelets by [3H]dihydroergocryptine binding. J. Clin. Invest.61, 395–402 (1978)

    Google Scholar 

  20. O'Brien, J.R.: Some effects of adrenaline and anti-adrenaline compounds on platelets in vitro and in vivo. Nature200, 763–764 (1963)

    Google Scholar 

  21. O'Brien, J.R.: A comparison of platelet aggregation produced by seven compounds and a comparison of their inhibitors. J. Clin. Pathol.17, 275–281 (1964)

    Google Scholar 

  22. Robison, G.A., Arnold, A., Hartmann, R.C.: Divergent effects of epinephrine and prostaglandin E1 on the level of cyclic AMP in human blood platelets. Pharmacol. Res. Commun.1, 325–332 (1969)

    Google Scholar 

  23. Salzman, E.W., Neri, L.L.: Cyclic 3′,5′-adenosine monophosphate in human blood pletelets. Nature224, 609–610 (1969)

    Google Scholar 

  24. Strittmatter, W.J., Davis, J.N., Lefkowitz, R.J.: α-Adrenergic receptors in rat parotid cells. I. Correlation of [3H]dihydroergocryptine binding and catecholamine-stimulated potassium efflux. J. Biol. Chem.252, 5472–5477 (1977)

    Google Scholar 

  25. Tsai, S., Lefkowitz, R.J.: [3H]Dihydroergocryptine binding to alpha-adrenergic receptors in canine aortic membranes. J. Pharmacol. Exp. Ther.204, 606–614 (1978)

    Google Scholar 

  26. Williams, L.T., Mullikin, D., Lefkowitz, R.J.: Identification of α-adrenergic receptors in uterine smooth muscle membranes by [3H]dihydroergocryptine binding. J. Biol. Chem.251, 6915–6923 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakobs, K.H., Rauschek, R. [3H]Dihydroergonine binding to α-adrenergic receptors in human platelets. Klin Wochenschr 56 (Suppl 1), 139–145 (1978). https://doi.org/10.1007/BF01477465

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01477465

Schlüsselwörter

Key words

Navigation