Skip to main content
Log in

Alcohol metabolism in man: Effect of intravenous fructose infusion on blood ethanol elimination rate following stimulation by phenobarbital treatment or chronic alcohol consumption

Untersuchungen zur Regulation des Alkoholabbaus beim Menschen: Effekt einer intravenösen Fruktose-Infusion auf die durch Phenobarbitalvorbehandlung oder chronischen Alkoholkonsum stimulierte Blutalkoholelimination

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Es wurde der Einfluß einer Vorbehandlung mit Phenobarbital (PB) und eines chronischen Alkoholabusus auf die Geschwindigkeit der Blutalkoholelimination (BAE) beim Menschen untersucht. Es wurde die BAE vor und während einer intravenösen Fruktoseinfusion gemessen. Fruktosezufuhr erhöht die Kapazität der Leber zur NADH-Oxidation und kann hierdurch die Alkoholoxidation stimulieren.

Durch PB-Vorbehandlung (300 mg/Tag für 5–6 Tage,n=8) nahm die unstimulierte (U-) BAE im Mittel um 50% zu. Die durch Fruktose stimulierte (FS-) BAE wurde durch PB-Vorbehandlung jedoch nicht signifikant beeinflußt. Bei chronischen Alkoholikern (n=15) wurden U-BAE-Werte, die über dem Bereich der bei gesunden Kontrollen gefundenen Abbauraten lagen, nur dann beobachtet, wenn die Dauer des Alkoholentzugs weniger als eine Woche betrug (n=6). Bei den chronischen Alkoholikern mit erhöhter U-BAE lagen die Werte der FS-BAE im gleichen Bereich wie bei den gesunden Kontrollen. Bei 5 der 6 Alkoholiker mit erhöhten Werten der U-BAE konnte letztere 2–4 Wochen nach Beginn des Alkoholentzugs erneut bestimmt werden. Die Werte waren in allen Fällen im Vergleich zu den Ausgangsbefunden deutlich vermindert. Die FS-BAE blieb somit durch Phenobarbital-Behandlung und chronischen Alkoholkonsum nahezu unbeeinflußt. Gleiches gilt, wie in einer vorangehenden Mitteilung gezeigt wurde, für längeres Fasten. Hieraus wird geschlossen, daß die deutlichen Änderungen der U-BAE vermutlich unabhängig von Aktivitätsänderungen der am Alkoholabbau beteiligten Enzyme sind.

Summary

The effect of phenobarbital (PB) pretreatment and of chronic alcoholism on blood ethanol elimination rate (BEER) was investigated in man. In order to gain additional information concerning the mechanism of possible changes BEER was determined before and during intravenous infusion of fructose, a compound known to increase the NADH-oxidizing capacity of the liver and thereby stimulating alcohol oxidation rate. Following PB-treatment (300 mg/day for 5–6 days,n=8) a marked increase in unstimulated (U-) BEER was obtained. But the fructose stimulated (FS-) BEER was not significantly changed by PB-treatment. In chronic alcoholics (n=15) U-BEER values above the upper limit (x+2 S D) obtained in healthy controls, were observed only when the time of sobriety was less than one week (n=6). Values of FS-BEER in chronic alcoholics with increased basal alcohol oxidation rates were in the same range as those of healthy controls. In 5 out of the 6 alcoholics in whom the values were elevated on admission, BEER decreased significantly after withdrawal of alcohol for 2–4 weeks. Since FS-BEER was nearly identical in all conditions tested, the distinct changes in U-BEER are probably independent of changes in the activity of enzymes involved in alcohol oxidation. It is assumed that alcohol metabolism in man is mainly controlled by the rate of NADH reoxidation in the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bernhard, C.G., Goldberg, L.: Aufnahme und Verbrennung des Alkohols bei Alkoholisten. Acta Med. Scand.86, 152–215 (1935)

    Google Scholar 

  2. Bergmeyer, H.U.: Methoden der enzymatischen Analyse, I, Weinheim/Bergstr.: Verlag Chemie (1974)

    Google Scholar 

  3. Bode, Ch., Goebell, H., Stähler, M.: Änderungen der Alkoholdehydrogenase-Aktivität in der Rattenleber durch Eiweißmangel und Äthanol. Z. ges. exp. Med.152, 111–124 (1970)

    Google Scholar 

  4. Bode, Ch., Buchwald, B., Goebell, H.: Hemmung des Äthanolabbaus durch Proteinmangel beim Menschen. Dt. Med. Wschr.40, 1576–1577 (1971)

    Google Scholar 

  5. Bode, J.Ch., Bode, Ch., Thiele, D.: Regulation of alcohol oxidation in man: Inhibition by prolonged fasting and stimulation by phenobarbital treatment or chronic alcohol consumption is equalized by fructose infusion (Abstr.). Digestion10, 319 (1974)

    Google Scholar 

  6. Bode, J.Ch.: Factors influencing ethanol metabolism in man. In: Thurman, R.G., Yonetani, T., Williamson, J.R., Chance, B. (eds.): Alcohol and Aldehyde Metabolizing Systems, New York and London: Acad. Press, p. 457–468 (1974)

    Google Scholar 

  7. Bode, J.Ch., Thiele, D.: Hemmung des Äthanolabbaus beim Menschen durch Fasten: Reversibilität durch Fructose-Infusion. Dtsch. med. Wschr.100, 1849–1851 (1975)

    Google Scholar 

  8. Bücher, Th., Redetzki, H.: Eine spezifische photometrische Bestimmung von Äthylalkohol auf fermentativem Wege. Klin. Wschr.29, 615–618 (1951)

    Google Scholar 

  9. Büttner, H.: Aldehyd- und Alkoholdehydrogenase-Aktivität in Leber und Niere der Ratte. Biochem. Z.341, 300–314 (1965)

    Google Scholar 

  10. Carpenter, T.M., Lee, R.C.: The effect of fructose on the metabolism of ethyl alcohol in man. J. Pharmacol. exper. Ther.60, 286–295 (1937)

    Google Scholar 

  11. Clark, Ch.G., Senior, J.R.: Ethanol clearance and oxidation of ethanol to carbon dioxide in persons with and without liver disease. Gastroenterology55, 670–676 (1968)

    Google Scholar 

  12. Elbel, H., Schleyer, F.: Blutalkohol. Stuttgart: Thieme (1956)

    Google Scholar 

  13. Hawkins, R.D., Kalant, H., Khanna, J.M.: Effects of chronic intake of ethanol on rate of ethanol metabolism. Can. J. Physiol. Pharmacol.44, 241–257 (1966)

    Google Scholar 

  14. Holzer, H., Schneider, S.: Zum Mechanismus der Beeinflussung der Alkoholoxidation in der Leber durch Fruktose. Klin. Wschr.33, 1006–1009 (1955)

    Google Scholar 

  15. Israel, Y., Bernstein, J., Videla, L.: On the mechanism of the changes in liver oxidative capacity produced by chronic alcohol ingestion. In: Thurman, R.G., Yonetani, T., Williamson, J.R., Chance, B. (eds.): Alcohol and Aldehyde Metabolizing Systems, Acad. Press, 493–509 (1974)

  16. Isselbacher, K.J., Carter, E.A.: Peroxidatic oxidation of ethanol by microsomes. In: Thurman, R.G., Yonetani, T., Williamson, J.R., Chance, B. (eds.): Alcohol and Aldehyde Metabolizing Systems, Acad. Press, Inc., 271–286 (1974)

  17. Kater, R.M.H., Carulli, N., Iber, F.L.: Differences in the rate of ethanol metabolism in recently drinking alcoholic and non-drinking subjects. Amer. J. Clin. Nutr.22, 1608–1617 (1969)

    Google Scholar 

  18. Le Breton, E.: Influence du jeune sur la vitesse d'oxydation de l'alcool éthylique chez le rat blanc. C.R. Soc. Biol.122, 330–332 (1936)

    Google Scholar 

  19. Leloir, L.F., Muñoz, J.M.: Ethyl alcohol metabolism in animal tissues. Biochem. J.32, 299–307 (1938)

    Google Scholar 

  20. Lieber, C.S., De Carli, L.M.: Ethanol oxidation by hepatic microsomes: Adaptive increase after ethanol feeding. Science162, 917–918 (1968)

    Google Scholar 

  21. Lieber, C.S., Rubin, E., De Carli, L.M.: Hepatic microsomal ethanol oxidizing system (MEOS): Differentiation from alcohol dehydrogenase and NADPH oxidase. Biochem. Biophys. Res. Commun.40, 858–865 (1970)

    Google Scholar 

  22. Lundquist, F., Wolthers, H.: The kinetics of alcohol elimination in man. Acta pharmacol. et toxicol.14, 265–289 (1958)

    Google Scholar 

  23. McCaffrey, T.B., Thurman, R.G.: Mechanism of the adaptive increase in ethanol utilization due to chronic prior pretreatment with alcohol. In: Thurman, R.G., Yonetani, T., Williamson, J.R., Chance, B. (eds.): Alcohol and Aldehyde Metabolizing Systems, New York: Acad. Press 483–492 (1974)

    Google Scholar 

  24. Mendelson, J.H.: Ethanol-1-C14-metabolism in alcoholics and non-alcoholics. Science159, 319–320 (1968)

    Google Scholar 

  25. Mezey, E., Tobon, F.: Rates of ethanol clearance and activities of the ethanol-oxidizing enzymes in chronic alcoholic patients. Gastroenterology61, 707–715 (1971)

    Google Scholar 

  26. Mezey, E., Robles, E.A.: Effects of phenobarbital administration on rates of ethanol clearance and on ethanol-oxidizing enzymes in man. Gastroenterol.66, 248–253 (1974)

    Google Scholar 

  27. Morrison, G.R., Brock, F.E.: Quantitative measurement of alcohol dehydrogenase activity within the liver lobule of rats after prolonged ethanol ingestion. J. Nutr.92, 286–292 (1967)

    Google Scholar 

  28. Rawat, A.K., Kuriyama, K.: Contribution of “substrate shuttles” in the transport of extramitochondrial reducing equivalents by hepatic mitochondria from chronic alcohol-fed mice. Arch. Biochem. Biophys.152, 44–52 (1972)

    Google Scholar 

  29. Scholz, R., Nohl, H.: Mechanism of the stimulatory effect of fructose on ethanol oxidation in perfused rat liver. Europ. J. Biochem.63, 449–458 (1976)

    Google Scholar 

  30. Schweisheimer, W.: Der Alkoholgehalt des Blutes unter verschiedenen Bedingungen. D. Arch. Klin. Med.109, 271–313 (1913)

    Google Scholar 

  31. Smith, M.E., Newman, H.W.: The rate of ethanol metabolism in fed and fasting animals. J. Biol. Chem.234, 1544–1551 (1959)

    Google Scholar 

  32. Thieden, H.J.D., Grunnet, N., Damgaard, S.E., Sestoft, L.: Effect of fructose and glyceraldehyde on ethanol metabolism in human liver and in rat liver. Europ. J. Biochem.30, 250–261 (1972)

    Google Scholar 

  33. Thurman, R.G., Scholz, R.: The role of hydrogen peroxide and catalase in hepatic microsomal ethanol oxidation. Drug Metabolism and Dispos.1, 441–448 (1973)

    Google Scholar 

  34. Trenholm, H.L., Maxwell, W.B., Paul, C.J., Wiberg, G.S., Coldwell, B.B.: Biochemical aspects of the interaction of ethanol with barbiturates. Can. J. Biochem.48, 706–711 (1970)

    Google Scholar 

  35. Tygstrup, N., Winkler, K., Lundquist, F.: The mechanism of the fructose effect on the ethanol metabolism of the human liver. J. Clin. Invest.44, 817–829 (1965)

    Google Scholar 

  36. Westerfeld, W.W., Stotz, E., Berg, R.L.: The coupled oxidation-reduction of alcohol and pyruvate in vivo. J. Biol. Chem.149, 237–243 (1943)

    Google Scholar 

  37. Widmark, M.P.: Die theoretischen Grundlagen und die praktische Verwendbarkeit der gerichtlich-medizinischen Alkoholbestimmung. Berlin: Urban u. Schwarzenberg (1932)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Deutsche Forschungsgemeinschaft (Grant Bo. 334/5–6)

Parts of the data were presented at the 9th Meeting of the European Association for the Study of the Liver (E.A.S.L.), Hemsedahl, Norway, Oct. 1974 (5), and at the 2nd International Symposium on “Alcohol and Aldehyde Metabolizing Systems”, Philadelphia, USA, Oct. 1976 (7a)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bode, J.C., Bode, C. & Thiele, D. Alcohol metabolism in man: Effect of intravenous fructose infusion on blood ethanol elimination rate following stimulation by phenobarbital treatment or chronic alcohol consumption. Klin Wochenschr 57, 125–130 (1979). https://doi.org/10.1007/BF01476052

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01476052

Schlüsselwörter

Key words

Navigation