Skip to main content
Log in

Studies on the mechanism of inhibition of axoplasmic transport of neuronal organelles

  • Published:
Journal of Neurocytology

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

This study is concerned with the effect of colchicine on the structure of fibrillar constituents of neurons and on the transport of neuronal organelles. Colchicine was injected beneath the perineurium of the hypoglossal nerve. Close to the site of the injection, the 24 and 48 h experimental axons showed loss of microtubules, increased numbers of filaments and increased amounts of the microfilamentous material bridging the filaments. Evidence of organelle damming was found proximal to the site of the injection. Five days after the injection of colchicine the nerves appear to have recovered and resemble control nerves. It is speculated that the circumscribed increase in the amount of filaments and microfilaments may produce a ‘gel barrier’ that interrupts mechanically the movement of organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BANKS, P., MAYOR, D. and TOMLINSON, D. R. (1971) Further evidence for the involvement of microtubules in the intra-axonal movement of noradrenaline storage granules.Journal of Physiology (Lond.)219, 755–61.

    Google Scholar 

  • BENSCH, K. G. and MALAWISTA, S. E. (1969) Microtubular crystals in mammalian cells.Journal of Cell Biology 40, 95–107.

    Google Scholar 

  • BORISY, G. G. and TAYLOR, E. W. (1967) The mechanism of action of colchicine.Journal of Cell Biology 34, 525–33.

    Google Scholar 

  • FERNANDEZ, H. L., HUNEEUS, F. C. and DAVISON, P. F. (1970) Studies on the mechanism of axoplasmic transport in the crayfish nerve cord.Journal of Neurobiology 1, 395–409.

    Google Scholar 

  • FERNANDEZ, H. L., BURTON, P. R. and SAMSON, F. E. (1971) Axoplasmic transport in the crayfish nerve cord. The role of fibrillar constituents of neurons.Journal of Cell Biology 51, 176–92.

    Google Scholar 

  • Fernandez, H. L. and Samson, F. E. (1973) Axoplasmic transport: differential inhibition by cytochalasin-B.Journal of Neurobiology (in press).

  • Karnovsky, M. J. (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy.Journal of Cell Biology 27, 137 A.

    Google Scholar 

  • Kennedy, R. D., Fink, B. R. and Byers, M. R. (1971) Effect of halothane on rapid axonal transport in the rabbit vagus.Annual Meeting American Society of Anesthesiologists. October, 1971. Abstract of Scientific Papers p. 129.

  • MALAWISTA, S. E., SATO, H. and BENSCH, K. G. (1968) Vinblastine and Griseofulvin reversibly disrupt the living mitotic spindle.Science 160, 770.

    Google Scholar 

  • NORSTRÖM, H. A., HANSSON, A. and SJÖSTRAND, J. (1971) Effects of colchicine on axonal transport and ultrastructure of the hypothalamo-neurohypophysial system of the rat.Zeitschrift für Zellforschung und mikroskopische Anatomie 113, 271–93.

    Google Scholar 

  • OLMSTED, J. B., CARLSON, K., KLEBE, R. RUDDLE, F. and ROSENBAUM, J. (1970) Isolation of microtubule protein from cultured neuroblastoma cells.Proceedings of the National Academy of Sciences (USA),65, 129–36.

    Google Scholar 

  • RODRÍGUEZ ECHANDÍA, E. L., PIEZZI, R. S. and PONCE-ZUMINO, A. (1968) Cold and colchicine treatment on the fine structure and electric activity of the sciatic nerve.Acta Physiologica Latino-Americana 28, 372–6.

    Google Scholar 

  • RODRÍGUEZ ECHANDÍA, E. L., ZAMORA, A. and PIEZZI, R. S. (1970) Organelle transport in constricted nerve fibers of the toad.Zeitschrift für Zellforschung und mikroskopische Anatomie 104, 419–29.

    Google Scholar 

  • RODRÍGUEZ ECHANDÍA, E. L. and SCHOEBITZ, K. (1972) The smooth endoplasmic reticulum in regenerating nerve fibers of the anuranCaliptocephalella Gayi.Zeitschrift für Zellforschung und mikroskopische Anatomie 132, 257–63.

    Google Scholar 

  • SAMSON, F. E. (1971) Mechanism of axoplasmic transport.Journal of Neurobiology 2, 347–60.

    Google Scholar 

  • SCHMITT, F. O. (1968) Fibrous proteins — neuronal organelles.Proceedings of the National Academy of Sciences (USA)60, 1092–101.

    Google Scholar 

  • SCHMITT, F. O. and SAMSON, F. E. (1968) Neuronal fibrous proteins.Neurosciences Research Program Bulletin 6, 113–219.

    Google Scholar 

  • SJÖSTRAND, J., FRIZELL, M. and HASSELGREN, P. O. (1970) Effects of colchicine on axonal transport in peripheral nerves.Journal of Neurochemistry 17, 1563–70.

    Google Scholar 

  • TILNEY, L. G. and GIBBINS, J. R. (1969) Microtubules in the formation and development of the primary mesenchyme inArbacia punctulata. II. An experimental analysis of their role in development and maintenance of cell shape.Journal of Cell Biology 41, 227–50.

    Google Scholar 

  • WISNIEWSKI, H. M., SHELANSKI, M. and TERRY, R. (1968) Effects of mitotic spindle inhibitors on neurotubules and neurofilaments in anterior horn cells.Journal of Cell Biology 38, 224–8.

    Google Scholar 

  • ZELENÁ, J., LUBÁNSKA, L. and GUTMANN, E. (1968) Accumulation of organelles at the ends of interrupted axons.Zeitschrift für Zellforschung und mikroskopische Anatomie 91, 200–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez Echandía, E.L., Ramirez, B.U. & Fernandez, H.L. Studies on the mechanism of inhibition of axoplasmic transport of neuronal organelles. J Neurocytol 2, 149–156 (1973). https://doi.org/10.1007/BF01474717

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01474717

Keywords

Navigation