Advertisement

Journal of Mammalian Evolution

, Volume 2, Issue 3, pp 185–203 | Cite as

Enamel microstructure ofTribosphenomys (Mammalia, glires): Character analysis and systematic implications

  • Jin Meng
  • André R. Wyss
Article

Abstract

Enamel distribution on the upper and lower incisors ofTribosphenomys minutus (from Late Paleocene-Early Eocene of Inner Mongolia of China) is typically rodent-like, i.e., primarily confined to the anterior surface throughout these transversely compressed, evergrowing teeth. AlthoughTribosphenomys incisor enamel is differentiated into two layers, it does not possess Hunter-Schreger bands (HSB). The incisor and molar enamels are radial in type, a condition regarded as either an autapomorph or a primtive retention forTribosphenomys. Character polarities concerning enamel thickness, enamel layer number, HSB, enamel types, and functional and phylogenetic implications of the enamel structures are discussed. Overall, enamel microstructural evolution at high taxonomic levels within Glires displays considerably more homoplasy than generally appreciated. A phylogenetic definition of Rodentia is proposed.Tribosphenomys is the sister-group of a taxon here named “Rodentia,” and thus is not itself a member of the order, from a systematic viewpoint.

Key Words

enamel microstructure Tribosphenomys, Rodentia, taxonomy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bleefeld, A. R., and McKenna, M. C. (1985). Skeletal integrity ofMimolagus rodens (Lagomorpha, Mammalia).Am. Mus. Novit. 2806: 1–5.Google Scholar
  2. Boyde, A. (1976). Enamel structure and cavity margins.Operative Dentistry 1: 13–28.Google Scholar
  3. Carlson, S. J., and Krause, D. W. (1985). Enamel ultrastructure of multituberculate mammals: An investigation of variability.Cont. Mus. Paleont., The University of Michigan 27: 1–50.Google Scholar
  4. Dashzeveg, D. (1990a). The earliest rodents (Rodentia, Ctenodactyloidea) of Central Asia.Acta Zool. Cracov. 33: 11–35.Google Scholar
  5. Dashzeveg, D. (1990b). New trends in adaptive radiation of early Tertiary rodents (Rodentia, Mammalia).Acta Zool. Cravov 33: 37–44.Google Scholar
  6. Dashzeveg, D., Russell, D. E., and Flynn, L. J. (1987). New Glires (Mammalia) from the early Eocene of the People's Republic of Mongolia. 1. Systematics and description.Proc. Koninkl. Akad. Wetensch. B90: 133–142.Google Scholar
  7. Dashzeveg, D., and Russell, D. E. (1988). Palaeocene and Eocene Mixodontia (Mammalia. Glires) of Mongolia and China.Palaeontology 31: 129–164.Google Scholar
  8. de Queiroz, K. (in press). Definition of the name “Mammalia” and the replacement of an essentialist perspective on taxonomic definitions.Syst. Biol. Google Scholar
  9. de Queiroz, K., and Gauthier, J. (1990). Phylogeny as a central principle in taxonomy: Phylogenetic definitions of taxon names.Syst. Biol. 39(4): 307–322.Google Scholar
  10. de Queiroz, K., and Gauthier, J. (1992). Phylogenetic taxonomy.Ann. Rev. Ecol. Syst. 23: 449–480.Google Scholar
  11. Flynn, L. J. (1994). Roots of rodent radiation.Nature 370: 97–98.PubMedGoogle Scholar
  12. Flynn, L. J., Jacobs, L. L., and Cheema, I. U. (1986). Baluchimyinae, a new ctenodactyloid rodent subfamily from the Miocene of Baluchistan.Am. Mus. Novitates 2841: 1–58.Google Scholar
  13. Flynn, L. J., Russell, D. E., and Dashzeveg, D. (1987). New Glires (Mammalia) from the early Eocene of the People's Republic of Mongolia. 2. Incisor morphology and enamel microstructure.Proc. Koninkl. Akad. Wetensch. B 90: 143–154.Google Scholar
  14. Hartenberger, J.-L. (1985). The order Rodentia: Major question on their evolutionary origin, relationships and suprafamilial systematics. In:Evolutionary Relationships Among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 1–33, Plenum Press, New York.Google Scholar
  15. Koenigswald, W. v. (1980). Schmelzmuster und Morphologie in den Molaren der Arvicolidae (Rodentia).Abh. Senckenb. naturf. Ges. 539: 1–129.Google Scholar
  16. Koenigswald, W. v. (1985). Evolutionary trends in the enamel of rodent incisors. In:Evolutionary Relationships among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 403–422, Plenum Press, New York.Google Scholar
  17. Koenigswald, W. v. (1988). Enamel modification in enlarged front teeth among mammals and the various possible reinforcements of the enamel.Mém. Mus. Natl. Hist. Nat. C53: 148–165.Google Scholar
  18. Koeingswald, W. v., and Clemens, W. A. (1992). Levels of complexity in the microstructure of mammalian enamel and their application in studies of systematics.Scan. Microsc. 6(1): 195–218.Google Scholar
  19. Koenigswald, W. v., and Pfretzschner, H. U. (1991). Biomechanics in the enamel of mammalian teeth. In:Constructional Morphology and Biomechanics, N. Schmidt-Kittler and K. Vogel, eds., pp. 113–125, Springer-Verlag, Berlin and Heidelberg.Google Scholar
  20. Koenigswald, W. v., Rensberger, J. M., and Pfretzschner, H. U. (1987). Changes in the tooth enamel of early Paleocene mammals allowing increased diet diversity.Nature 328: 150–152.PubMedGoogle Scholar
  21. Koenigswald, W. v., Sander, P. M., Leite, M. B., Mörs, T., and Santel, W. (1994) Functional symmetries in the schmelzmuster and morphology of rootless rodent molars.Zool. J. Linn. Soc. 110: 141–179.Google Scholar
  22. Korvenkontio, V. A. (1934). Mikroskopische Untersuchungen an Nagerincisiven unter Hinweis auf die Schmelzstruktur der Backenzähne.Ann. Zool. Soc. Zool.-Bot. Fenn. Vanano 2: 1–274.Google Scholar
  23. Li, C.-K. (1977). Paleocene eurymyloids (Anagalida, Mammalia) of Quianshan, Anhui.Vert. PalAsiat. 15: 103–118.Google Scholar
  24. Li, C.-K., and Chow, M.-C. (1994). The origin of rodents. In:Rodent and Lagomorph Families of Asian Origins and Diversification, Y. Tomida, C.-K. Li, and T. Setoguchi, eds., pp. 15–18, National Science Museum Monographs 8, Tokyo.Google Scholar
  25. Li, C.-K., and Ting, S.-Y. (1985). Possible phylogenetic relationships of eurymylids and rodents, with comments on mimotonids. In:Evolutionary Relationships Among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 35–58, Plenum Press, New York.Google Scholar
  26. Li, C.-K., and Ting, S.-Y. (1993). New cranial and postcranial evidence for the affinities of the eurymylids (Rodentia) and mimotonids (Lagomorpha). In:Mammal Phylogeny-Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 151–158, Springer-Verlag, New York.Google Scholar
  27. Li, C.-K., Wilson, R. W., Dawson, M. R., and Krishtalka, L. (1987). The origin of rodents and lagomorphs. In:Current Mammalogy (Vol. 1), H. H. Genoways, ed., pp. 97–108. Plenum Press, New York.Google Scholar
  28. Li, C.-K., and Yan, D.-F. (1979). The systematic position of eurymylids (Mammalia) and the origin of Rodentia. In:Abstracts of Papers, 12th Annual Conference and 3rd National Congress Paleontological Society of China, pp. 155–156, Beijing.Google Scholar
  29. Li, C.-K., Zheng, J.-J., and Ting, S.-Y. (1989). The skull ofCocomys lingchaensis, an early Eocene ctenodactyloid rodent of Asia. In:Papers on Fossil Rodents in Honour of Albert Elmer Wood, C. C. Black and M. Dawson, eds., pp. 179–192, Los Angeles County Museum, Los Angeles.Google Scholar
  30. Luckett, W. P., and Hartenberger, J.-L. (1993). Monophyly or polyphyly of the Order Rodentia: Possible conflict between morphological and molecular interpretations.J. Mam. Evol. 1: 127–147.Google Scholar
  31. Martin, T. (1992). Schmelzstruktur in den Inzisiven alt—und neuweltlicher hystricognather Nagetiere.Palaeovertebrata Mém. extra. 1–168.Google Scholar
  32. Martin, T. (1993). Early rodent incisor enamel evolution: Phylogenetic implications.J. Mam. Evol. 1: 227–254.Google Scholar
  33. McKenna, M. C. (1982). Lagomorpha interrelationships. In: Phylogénie et Paléobiogéographie. Livre jubilaire en l'honneur de Robert Hoffstetter.Géobios, mém. spéc. 6: 213–224.Google Scholar
  34. McKenna, M. C. (1993). Cranial features of mimotonid lagomorphs.J. Vert. Paleont. 13: (Suppl.) 50A.Google Scholar
  35. Meng, J., Wyss, A. R., Dawson, M. R., and Zhai, R.-J. (1994). Primitive fossil rodent from Inner Mongolia and its implications for mammalian phylogeny.Nature 370: 134–136.PubMedGoogle Scholar
  36. Pfretzschner, H. U. (1988). Structural reinforcement and crack propagation in enamel.Mém. Mus. Natl. Hist. Nat. Paris C 53: 133–143.Google Scholar
  37. Rensberger, J. M., and Koenigswald, W. v. (1980). Functional and phylogenetic interpretation of enamel microstructure in rhinoceroses.Paleobiology 6: 477–495.Google Scholar
  38. Russell, D. E., and Zhai, R.-J. (1987). The Palaeogene of Asia: Mammals and stratigraphy.Mém. Mus. Nat. d'Hist. Nat. Series C, Sciences de la Terre 52: 1–488.Google Scholar
  39. Sahni, A. (1985). Enamel structure of early mammals and its role in evaluating relationships among rodents. In:Evolutionary Relationships Among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 133–150. Plenum Press, New York.Google Scholar
  40. Simpson, G. G. (1945). The principles of classification and a classification of mammals.Bull. Amer. Mus. Nat. Hist. 85: 1–350.Google Scholar
  41. Stern, D., Crompton, A. W., and Skobe, Z. (1989). Enamel ultrastructure and masticatory function in molars of the American opossum,Didelphis virginiana.Zool. J. Linn. Soc. London 95: 311–334.Google Scholar
  42. Sych, L. (1971). Mixodontia, a new order of mammals from the Paleocene of Mongolia.Pal. Polonica 25: 147–158.Google Scholar
  43. Tomes, J. (1850). On the structure of the dental tissues of the order Rodentia.Phil. Tran. Roy. Soc. Lond. 1850: 529–567.Google Scholar
  44. Tong, Y.-S., and Dawson, M. R. (in press). Early Eocene rodents (Mammalia) from Shangdong Province, China.Ann. Carnegie Mus.Google Scholar
  45. Wahlert, J. H. (1984). Hystricomorphs, the oldest branch of the Rodentia.Ann. N. Y. Acad. Sci. 435: 356–357.Google Scholar
  46. Wahlert, J. H. (1989). The three types of incisor enamel in rodents.Nat. Hist. Mus. Los Angeles Co. Sci. Ser. 33: 7–16.Google Scholar
  47. Wood, A. E., (1962). The early Tertiary rodents of the family Paramyidae.Trans. Am. Phil. Soc. 52: 1–261.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Jin Meng
    • 1
    • 2
  • André R. Wyss
    • 3
  1. 1.Department of Vertebrate PaleontologyAmerican Museum of Natural HistoryNew York
  2. 2.Institute of Vertebrate Paleontology and PaleoanthropologyBeijingPeople's Republic of China
  3. 3.Department of Geological SciencesUniversity of CaliforniaSanta Barbara

Personalised recommendations