Skip to main content
Log in

The martin boundary for harmonic functions on groups of automorphisms of a homogeneous tree

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Consider a closed subgroup Γ of the automorphism group of a homogeneous treeT, and assume that Γ acts transitively on the vertex set. Suppose that μ is a probability measure on Γ which has continuous density with respect to Haar measure and whose support is compact open and generates Γ as a closed semigroup. It is shown that the Martin boundary of Γ with respect to the random walk with law μ coincides with the space of ends ofT. This extends known results for free groups and applies, for example, to the affine group over a non archimedean local field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ancona, A.: Positive harmonic functions and hyperbolicity. Potential Theory, Surveys and Problems (J. Král et al., eds.), pp. 1–23. Lect. Notes Math.1344. Berlin, Heidelberg, New York: Springer. 1988.

    Google Scholar 

  2. Azencott, R., Cartier, P.: Martin boundaries of random walks on locally compact groups. Proc. 6th Berkeley Sympos. on Math. Statistics and Probability3, pp. 87–129. Berkeley: Univ. of California Press. 1972.

    Google Scholar 

  3. Birkhoff, G.: Extensions of Jentzsch's theorem. Trans. Amer. Math. Soc.85, 219–227 (1957).

    Google Scholar 

  4. Cartier, P.: Fonctions harmoniques sur un arbre. Symposia Math.9, 203–270 (1972).

    Google Scholar 

  5. Cartwright, D. I., Kaimanovich, V. A., Woess, W.: Random walks on the affine group of local fields and homogeneous trees. Ann. Inst. Fourier (Grenoble)44, 1243–1288 (1994).

    Google Scholar 

  6. Cartwright, D. I., Soardi, P. M., Woess, W.: Martin and end compactifications of non locally finite graphs. Trans. Amer. Math. Soc.338, 670–693 (1993).

    Google Scholar 

  7. Derriennic, Y.: Sur la frontière de Martin des processus de Markov à temps discret. Ann. Inst. Henri Poincaré, Sect. B9, 233–258 (1973).

    Google Scholar 

  8. Derriennic, Y.: Marche aléatoire sur le groupe libre et frontière de Martin. Z. Wahrsch. Verw. Gebiete32, 261–276 (1975).

    Google Scholar 

  9. Doob, J. L.: Discrete potential theory and boundaries. J. Math. Mech.8, 433–458 (1959).

    Google Scholar 

  10. Élie, L.: Fonctions harmoniques positives sur le groupe affine. Probability Measures on Groups (H. Heyer, ed.), pp. 96–110, Lect. Notes Math.706. Berlin, Heidelberg, New York: Springer. 1979.

    Google Scholar 

  11. Figá-Talamanca, A., Nebbia, C.: Harmonic Analysis and Representation Theory for Groups Acting on Homogeneous Trees. Cambridge: Univ. Press. 1991.

    Google Scholar 

  12. Guivarc'h, Y., Keane, M., Roynette, B.: Marches Aléatoires sur les Groupes de Lie. Lect. Notes Math.624. Berlin, Heidelberg, New York: Springer. 1977.

    Google Scholar 

  13. Hewitt, E., Ross, K. A.: Abstract Harmonic Analysis I. Berlin, Heidelberg, New York: Springer. 1963.

    Google Scholar 

  14. Hunt, G. A.: Markoff chains and Martin boundaries. Illinois J. Math.4, 313–340 (1960).

    Google Scholar 

  15. Martin, R. S.: Minimal harmonic functions. Trans. Amer. Math. Soc.49, 137–172 (1941).

    Google Scholar 

  16. Ney, P., Spitzer, F.: The Martin boundary for random walk. Trans. Amer. Math. Soc.121, 116–132 (1966).

    Google Scholar 

  17. Picardello, M. A., Woess, W.: Martin boundaries of random walks: ends of trees and groups. Trans. Amer. Math. Soc.302, 185–205 (1987).

    Google Scholar 

  18. Revuz, D.: Markov Chains. Amsterdam: North Holland. 1975.

    Google Scholar 

  19. Serre, J.-P.: Local Fields. New York: Springer. 1979.

    Google Scholar 

  20. Serre, J.-P.: Trees. New York: Springer. 1980.

    Google Scholar 

  21. Soardi, P. M., Woess, W.: Amenability, unimodularity, and the spectral radius of random walks on infinite graphs. Math. Z.205, 471–486 (1990).

    Google Scholar 

  22. Woess, W.: Random walks on infinite graphs and groups: a survey on selected topics. Bull. London Math. Soc.26, 1–60 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woess, W. The martin boundary for harmonic functions on groups of automorphisms of a homogeneous tree. Monatshefte für Mathematik 120, 55–72 (1995). https://doi.org/10.1007/BF01470065

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01470065

Math. Subject Classification

Key words and Phrases

Navigation