Skip to main content
Log in

Stabilization of mixed valence states in partly oxidized one-dimensional transition metal systems

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The spatial hole-state properties of partly oxidized one-dimensional (1D) organometallic solids with weak metal-metal interactions (either due to large separations between the corresponding building blocks or due to bridging organic ligand functions) have been studied in the crystal orbital (CO) formalism based on the tight-binding technique. The numerical analysis is restricted to insulating band states. The employed computational model is a semiempirical self-consistent-field (SCF) Hartree-Fock (HF) CO variant derived within the INDO (intermediate neglect of differential overlap) approximation. We have adopted a simple averaging procedure for the “open shell” systems which is based on a density operator that has its origin in the grand canonical (GC) ensemble in order to avoid the numerical difficulties of restricted or unrestricted tight-binding calculations on the oxidized 1D chains. The present method, however, is not related to temperature-dependent equilibria in statistical mechanics but is only a formal, highly efficient approach for the formation of average-states in the mean-field approximation. As one-dimensional models we have adopted the infinite tetracyanatonickelate(II), Ni(CN) 2−4 1, and the cyclopentadienylmanganese(I), MnCp2, systems. The electron removal processes in both 1D materials are more (1) or less (2) metal-centered (\(3d_{z^2 } \) states). The mean-field ground states of both oxidized modifications correspond to broken symmetry CDW (charge density wave) solutions that lead to mixed valence states with inequivalent numbers of electrons at adjacent transition metal centers. This symmetry breaking guarantees that important left-right correlations between the 3d atoms are taken into account even in the SCF HF approximation. The valence trapping in1 is strong, i.e. the mutual charge separation between the Ni centers amounts to 0.87e. The bridging organic π ligands in2 prevent such pronounced differences of the net charges at the Mn centers and cause a reduction of the charge separation to 0.09e–0.14e.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kunz, A.B.: In: Excited states in quantum chemistry. Nicolaides, C.A., Beck, D.R. (eds.), p. 471. Dordrecht: D. Reidel Publ. Co. 1978

    Google Scholar 

  2. Kunz, A.B.: J. Phys. C14, L455 (1981)

    Google Scholar 

  3. Brandow, B.H.: Adv. Phys.26, 651 (1977)

    Google Scholar 

  4. Brandow, B.H.: Int. J. Quantum Chem. S.10, 417 (1976)

    Google Scholar 

  5. Koopmans, T.: Physica1, 104 (1933)

    Article  Google Scholar 

  6. Seitz, F.: Modern theory of solids. New York: McGraw Hill 1940

    Google Scholar 

  7. Kunz, A.B., Weidman, R.S., Boettger, J., Cochran, G.: Int. J. Quantum Chem. S14, 585 (1980)

    Google Scholar 

  8. Devresse, J.T., Evrard, R.P., Doren, V.E. van (eds.): Highly conducting one-dimensional solids. New York: Plenum Press 1979; Hatfield, W.A. (ed.): Molecular metals. New York: Plenum Press 1979

    Google Scholar 

  9. Brown, D.B. (ed.): Mixed valence compounds. Dordrecht: D. Reidel Publ. Co. 1980; Alcacér, L. (ed.): The physics and chemistry of low dimensional solids. Dordrecht: D. Reidel Publ. Co. 1980

    Google Scholar 

  10. Miller, J.S. (ed.): Extended linear chain compounds. Vols. 1 and 2. New York: Plenum Press 1982

    Google Scholar 

  11. Hubbard, J.: Proc. R. Soc. London Ser A276, 238 (1963);277, 237 (1963);281, 401 (1964)

    Google Scholar 

  12. Soos, Z.G.: Annu. Rev. Phys. Chem.25, 121 (1974); Torrance, J.B.: Acc. Chem. Res.12, 79 (1979)

    Article  Google Scholar 

  13. Böhm, M.C.: Phys. Lett102 A, 121 (1984)

    Google Scholar 

  14. Böhm, M.C.: J. Phys. C.16, 1631 (1983)

    Google Scholar 

  15. Böhm, M.C.: Phys. Rev. B28, 6914 (1983)

    Article  Google Scholar 

  16. Böhm, M.C.: Chem. Phys.76, 1 (1983)

    Article  Google Scholar 

  17. Böhm, M.C.: Phys. Lett.93A, 205 (1983); J. Chem. Phys.80, 2704 (1984)

    Google Scholar 

  18. Böhm, M.C.: Theor. Chim. Acta62, 351 (1983)

    Article  Google Scholar 

  19. Böhm, M.C., Gleiter, R.: Theor. Chim. Acta59, 127 (1981)

    Article  Google Scholar 

  20. Moreau-Colin, M.L.: Struct. Bonding (Berlin)10, 164 (1972)

    Google Scholar 

  21. Rice, M.J., Bernasconi, J.: J. Phys. F3, 55 (1973)

    Article  Google Scholar 

  22. Yersin, H., Hidvegi, I., Gliemann, G., Stock, M.: Phys. Rev. B19, 177 (1979); Hidvegi, I., Ammon, W. v., Gliemann, G.: J. Chem. Phys.76, 4361 (1982)

    Article  Google Scholar 

  23. Kasi Viswanath, A., Krogh-Jespersen, M.-B., Vetuskey, J., Baker, C., Ellenson, W.D., Patterson, H.H.: Mol. Phys.42, 1431 (1981); Kasi Viswanath, A., Vetuskey, J., Leighton, R., Krogh-Jespersen, M.-B., Patterson, H.: Mol Phys.48, 567 (1983)

    Google Scholar 

  24. Clark, S., Day, P., Huddart, D.J., Ironside, C.N.: J. Chem. Soc. Faraday Trans. 279, 65 (1983)

    Article  Google Scholar 

  25. Edwin, J., Bochmann, W., Böhm, M.C., Brennan, D.E., Geiger, W.E., Krüger, C., Pebler, J., Pritzkow, H., Siebert, W., Swiridoff, W., Wadepohl, H., Weiss, J., Zenneck, U.: J. Am. Chem. Soc.105, 2582 (1983)

    Article  Google Scholar 

  26. Whangbo, M.-H.: Acc. Chem. Res.16, 95 (1983)

    Article  Google Scholar 

  27. Wigner, E.P.: Trans. Faraday Soc.34, 678 (1938)

    Article  Google Scholar 

  28. Slater, J.C.: Phys. Rev.82, 538 (1951)

    Article  Google Scholar 

  29. Matsubara, T., Yokota, T.: In: Proceedings of the International Conference on Theoretical Physics, p. 693. Kyoto-Tokyo 1954

  30. Cloizeaux, J. de: J. Phys. Radium20, 606, 751 (1959)

    Google Scholar 

  31. Peierls, R.: Quantum theory of solids. London: Clarendon Press 1955

    Google Scholar 

  32. Goodenough, J.B.: Phys. Rev.117, 1442 (1960)

    Article  Google Scholar 

  33. Alder, D., Brooks, H.: Phys. Rev.155, 826 (1967)

    Article  Google Scholar 

  34. Abdulnur, S.F., Linderberg, J., Öhrn, Y., Thulstrup, P.W.: Phys. Rev. A6, 889 (1972); Jørgensen, P.: J. Chem. Phys.,57, 4884 (1972)

    Article  Google Scholar 

  35. Linderberg, J., Öhrn, Y.: Propagators in quantum chemistry. London: Academic Press 1973

    Google Scholar 

  36. Böhm, M.C.: Phys. Status Solidi (b) (in press)

  37. Böhm, M.C.: J. Chem. Phys. (in press)

  38. Cowan, D.O., LeVanda, C., Park, J., Kaufman, F.: Acc. Chem. Res.6, 1 (1973)

    Article  Google Scholar 

  39. Ibers, J.A., Pace, L.J., Martinsen, J., Hoffman, B.M.: Struct. Bonding (Berlin)50, 1 (1982); Hoffman, B.M., Ibers, J.A.: Acc. Chem. Res.16, 15 (1983)

    Google Scholar 

  40. Böhm, M.C.: J. Chem. Phys.78, 7044 (1983)

    Article  Google Scholar 

  41. Demuynck, J., Veillard, A.: Theor. Chim. Acta28, 241 (1973)

    Article  Google Scholar 

  42. Hartree, D.R.: The calculation of atomic structure. London: Academic Press 1957

    Google Scholar 

  43. Siebert, W.: Adv. Organomet. Chem.18, 301 (1981)

    Google Scholar 

  44. Mulliken, R.S.: J. Chem. Phys.23, 1833 (1955)

    Google Scholar 

  45. Herring, C.: Phys. Rev.52, 361, 365 (1937)

    Article  Google Scholar 

  46. Böhm, M.C.: Z. Naturforsch. (a) (submitted for publication)

  47. Fukutome, H.: Int. J. Quantum Chem.20, 955 (1981)

    Article  Google Scholar 

  48. Böhm, M.C.: Int. J. Quantum Chem.24, 185 (1983)

    Article  Google Scholar 

  49. Pople, J.A., Beveridge, D.L.: Approximate molecular orbital theory. New York: McGraw Hill 1970

    Google Scholar 

  50. Herring, C.: In: Magnetism. Vol. 4. Rado, G.T., Suhl, H. (eds.), p. 85. New York: Academic Press 1966

    Google Scholar 

  51. Calais, J.-L.: Int. J. Quantum Chem. S11, 547 (1977)

    Google Scholar 

  52. Benard, M.: Theor. Chim. Acta61, 379 (1982); Benard, M.: Chem. Phys. Lett.96, 183 (1983)

    Article  Google Scholar 

  53. Böhm, M.C., Gleiter, R., Delgado-Pena, F., Cowan, D.O.: J. Chem. Phys.79, 1154 (1983)

    Article  Google Scholar 

  54. Wachter, P., Boppart, H. (eds.): Valence instabilities. Amsterdam: North-Holland Publ. Co. 1982

    Google Scholar 

  55. Pantelides, S.T., Mickish, D.J., Kunz, A.B.: Phys. Rev. B10, 2602 (1974)

    Article  Google Scholar 

  56. Horsch, S., Horsch, P., Fulde, P.: Phys. Rev. B28, 5977 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhm, M.C. Stabilization of mixed valence states in partly oxidized one-dimensional transition metal systems. Z. Physik B - Condensed Matter 56, 99–110 (1984). https://doi.org/10.1007/BF01469690

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01469690

Keywords

Navigation