Skip to main content
Log in

Subcoercivity and subelliptic operators on Lie groups I: Free nilpotent groups

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let (χ, G, U) be a continuous representation of a Lie groupG by bounded operatorsgU(g) on the Banach space χ and let (χ,\(\mathfrak{g}\),dU) denote the representation of the Lie algebra\(\mathfrak{g}\) obtained by differentiation. Ifa 1, ...,a d′ is a Lie algebra basis of\(\mathfrak{g}\),A i=dU(a i) and\(A^\alpha = A_{i_1 } ...A_{i_k } \) whenever α=(i 1, ...,i k) we consider the operators

$$H = \mathop \sum \limits_{\alpha ;|\alpha | \leqslant 2n} c_\alpha A^\alpha $$

where thec α are complex coefficients satisfying a subcoercivity condition. This condition is such that the class of operators considered encompasses all the standard second-order subelliptic operators with real coefficients, all operators of the form\(\sum _{i = 1}^{d'} \lambda _i ( - A_i^2 )^n \) with Re λ i >0 together with operators of the form

$$H = ( - 1)^n \mathop \sum \limits_{\alpha ;|\alpha | = n} \mathop \sum \limits_{\beta ;|\beta | = n} c_{\alpha ,\beta } A^{\alpha _* } A^\beta $$

where α*=(i k, ...,i 1) if α=(i 1, ...,i k) and the real part of the matrix (c α β) is strictly positive. In case the Lie algebra\(\mathfrak{g}\) is free of stepr, wherer is the rank of the algebraic basisa 1, ...,a d′,G is connected andU is the left regular representation inG we prove that the closure\(\overline H \) ofH generates a holomorphic semigroupS. Moreover, the semigroupS has a smooth kernel and we derive bounds on the kernel and all its derivatives. This will be a key ingredient for the paper [13] in which the above results will be extended to general groups and representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bratteli, O., Goodman, F.M., Jørgensen, P.E.T., and Robinson, D.W.: Unitary representations of Lie groups and Gårding's inequality.Proc. Amer. Math. Soc. 107 (1989), 627–632.

    Google Scholar 

  2. Bratteli, O., and Robinson, D.W.:Operator Algebras and Quantum Statistical Mechanics, vol. 1. Second edition. Springer, New York etc., 1987.

    Google Scholar 

  3. Bratteli, O., and Robinson, D.W.: Subelliptic operators on Lie groups: variable coefficients.Acta Applicandae Mathematica (1994). To appear.

  4. Burns, R.J., Elst, A.F.M. ter, and Robinson, D. W.:L p-regularity of subelliptic operators on Lie groups.J. Operator Theory 30 (1993).

  5. Butzer P.L., and Berens, H.:Semi-Groups of Operators and Approximation. Die Grundlehren der mathematischen Wissenschaften 145. Springer-Verlag, Berlin etc., 1967.

    Google Scholar 

  6. Cowling, M., Hulanicki, A., and Vespri, V.: Subelliptic operators and holomorphic semigroups. In preparation.

  7. Davies, E.B.:One-parameter semigroups. London Math. Soc. Monographs 15. Academic Press, London etc., 1980.

    Google Scholar 

  8. Davies, E.B.:Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics 92. Cambridge University Press, Cambridge etc., 1989.

    Google Scholar 

  9. Dziubański, J., and Hulanicki, A.: On semigroups generated by left-invariant positive differential operators on nilpotent Lie groups.Studia Math. 94 (1989), 81–95.

    Google Scholar 

  10. Elst, A.F.M. ter: On the differential structure of principal series representations.J. Operator Theory 28 (1992).

  11. Elst, A.F.M. ter, and Robinson, D.W.: Subelliptic operators on Lie groups: regularity.J. Austr. Math. Soc. (Series A) (1994). To appear.

  12. Elst, A.F.M. ter, and Robinson, D.W.: Subelliptic operators on Lie groups. In Doust, I., and Jeffries, B., eds.,Miniconference on Probability and Analysis, vol. 29 of Proceedings of the Centre for Mathematics and its Applications. Australian National University, 1992, 63–72.

  13. Elst, A.F.M. ter, and Robinson, D.W.: Subcoercivity and subelliptic operators on Lie groups II: The general case,Potential Analysis (1994). To appear.

  14. Folland, G.B.: Subelliptic estimates and function spaces on nilpotent Lie groups.Archiv für matemathik 13 (1975), 161–207.

    Google Scholar 

  15. Folland, G.B.:Introduction to Partial Differential Equations. Mathematical Notes 17. Princeton University Press, Princeton, 1976.

    Google Scholar 

  16. Folland, G.B., and Stein, E.M.:Hardy Spaces on Homogeneous Groups. Mathematical Notes 28. Princeton University Press, Princeton, 1982.

    Google Scholar 

  17. Gårding, L.: Vecteurs analytiques dans les représentations des groupes de Lie.Bull. Soc. Math. France 88 (1960), 73–93.

    Google Scholar 

  18. Goodman, R.: Analytic and entire vectors for representations of Lie groups.Trans. Amer. Math. Soc. 143 (1969), 55–76.

    Google Scholar 

  19. Hebisch, W.: Sharp pointwise estimate for the kernels of the semigroup generated by sums of even powers of vector fields on homogeneous groups.Stud. Math. 95 (1989), 93–106.

    Google Scholar 

  20. Hebisch, W.: Estimates on the semigroups generated by left invariant operators on Lie groups.J. Reine Angew. Math. 423 (1992), 1–45.

    Google Scholar 

  21. Helffer, B.: Partial differential equations on nilpotent groups. In Herb, R., Johnson, R., Lipsman, R., and Rosenberg, J., eds.,Lie Group Representations III, Lecture Notes in Mathematics 1077. Springer-Verlag, Berlin etc., 1984, 210–253.

    Google Scholar 

  22. Helffer, B., and Nourrigat, J.: Characterisation des operateurs hypoelliptiques homogenes invariants a gauche sur un groupe de Lie nilpotent gradue.Comm. Part. Diff. Eq. 4 (1979), 899–958.

    Google Scholar 

  23. Hörmander, L.: Hypoelliptic second order differential equations.Acta Math. (1967), 147–171.

  24. Jerison, D.S., and Sánchez-Calle, A.: Estimates for the heat kernel for a sum of squares of vector fields.Ind. Univ. Math. J. 35 (1986), 835–854.

    Google Scholar 

  25. Kato, T.: A generalization of the Heinz inequality.Proc. Japan Acad. 37 (1961), 305–308.

    Google Scholar 

  26. Kato, T.:Perturbation Theory for Linear Operators. Second edition, Grundlehren der mathematischen Wissenschaften 132. Springer-Verlag, Berlin etc., 1984.

    Google Scholar 

  27. Leeuw, K. de, and Mirkel, H.: A priori estimates for differential operators inL norm.Illinois J. Math. 8 (1964), 112–124.

    Google Scholar 

  28. Melin, A.: Parametrix constructions for right invariant differential operators on nilpotent groups.Ann. Glob. Anal. Geom. 1 (1983), 79–130.

    Google Scholar 

  29. Ornstein, D.: A non-inequality for differential operators in theL 1 norm.Arch. Rational Mech. Anal. 11 (1962), 40–49.

    Google Scholar 

  30. Ouhabaz, E.-M.:L -contractivity of semigroups generated by sectorial forms.J. London Math. Soc. 46 (1992), 529–542.

    Google Scholar 

  31. Poulsen, N.S.: OnC -vectors and intertwining bilinear forms for representations of Lie groups.J. Funct. Anal. 9 (1972), 87–120.

    Google Scholar 

  32. Robinson, D.W.:Elliptic Operators and Lie Groups. Oxford Mathematical Monographs. Oxford University Press, Oxford etc., 1991.

    Google Scholar 

  33. Rothschild, L.P., and Stein, E.M.: Hypoelliptic differential operators and nilpotent groups.Acta Math. 137 (1976), 247–320.

    Google Scholar 

  34. Rusinek, J.: Analytic vectors and integrability of Lie algebra representations.J. Funct. Anal. 74 (1987), 10–23.

    Google Scholar 

  35. Triebel, H.:Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam, 1978.

    Google Scholar 

  36. Varopoulos, N.T., Saloff-Coste, L., and Coulhon, T.:Analysis and Geometry on Groups. Cambridge Tracts in Mathematics 100. Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  37. Wilansky, A.:Modern Methods in Topological Vector Spaces. McGraw-Hill, New York etc., 1978.

    Google Scholar 

  38. Yosida, K.:Functional Analysis. Sixth edition edition, Grundlehren der mathematischen Wissenschaften 123. Springer-Verlag, New York etc., 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ter Elst, A.F.M., Robinson, D.W. Subcoercivity and subelliptic operators on Lie groups I: Free nilpotent groups. Potential Anal 3, 283–337 (1994). https://doi.org/10.1007/BF01468248

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01468248

Mathematics Subject Classifications (1991)

Key words

Navigation