Advertisement

Glucose and free fatty acid utilization during prolonged exercise in prepubertal boys in relation to catecholamine responses

  • P. Delamarche
  • M. Monnier
  • A. Gratas-Delamarche
  • H. E. Koubi
  • M. H. Mayet
  • R. Favier
Article

Summary

Ten prepubertal boys performed 60-min cycle exercise at about 60% of their maximal oxygen uptake as previously measured. To measure packed cell volume, plasma glucose, free fatty acids (FFA), glycerol and catecholamines, blood samples were drawn at rest using a heparinized cathether and at the 15th, 30th and 60th min of the exercise and after 30 min of recovery. At rest, the blood glucose concentrations were at the lowest values for normal. Exercise induced a small decrease of blood glucose which was combined with an abrupt increase of the noradrenaline concentration during the first 15 min. The FFA and glycerol concentrations increased throughout the exercise linearly with that of adrenaline. Compared to adults, the FFA uptake expressed per minute and per litre of oxygen uptake was greater in children. These results suggested that it is difficult for children to maintain a constant blood glucose concentration and that prolonged exercise provided a real stimulus to hypoglycaemia. An immediate and large increase in noradrenaline concentration during exercise and a greater utilization of FFA was probably used by children to prevent hypoglycaemia.

Key words

Children Exercise Catecholamines Glucose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astrand PO, Saltin B (1964) Plasma and red cell volume after prolonged severe exercise. J Appl Physiol 19:829–832PubMedGoogle Scholar
  2. Banister EW, Griffiths J (1972) Blood levels of adrenergic amines during exercise. J Appl Physiol 33:674–676PubMedGoogle Scholar
  3. Costill DL, Coyle E, Dalsky G, Evans W, Fink W, Hoopes D (1977) Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise. J Appl Physiol 43:695–699PubMedGoogle Scholar
  4. Costill DL, Fink WJ, Getchell LH, Ivy JL, Witzman Å (1979) Lipid metabolism in skeletal muscle of endurance-trained males and females. J Appl Physiol 61:1796–1801Google Scholar
  5. Davies CTM (1981) Thermal responses to exercise in children. Ergonomics 48:55–61Google Scholar
  6. Delamarche P, Bittel J, Lacour JR, Flandrois R (1990) Thermoregulation at rest and during exercise in prepubertal boys. Eur J Appl Physiol 60:436–440Google Scholar
  7. Despres JP, Bouchard C, Savard R, Tremblay Å, Marcotte M, Theriault G (1984) The effect of a 20-week endurance training program on adipose tissue morphology and lipolysis in men and women. Metabolism 33:235–239PubMedGoogle Scholar
  8. Eriksson BO (1972) Physical training, oxygen supply and muscle metabolism in 11–13 year-old boys. Acta Physiol Scand [Suppl] 384:1–48Google Scholar
  9. Eriksson BO, Persson B, Thorell JI (1971) The effects of repeated prolonged exercise on plasma growth hormone, insulin, glucose, free fatty acids, glycerol, lactate andβ hydroxybutyric acid in 13-year old boys and in adults. Acta Paediatr Scand [Suppl] 217:142–146Google Scholar
  10. Eriksson BO, Gollnick P, Saltin B (1973) Muscle metabolism and enzyme activities after training in boys 11–13 years old. Acta Physiol Scand 87:485–497PubMedGoogle Scholar
  11. Flandrois R (1977) Conséquences de l'exercice de longue durée sur l'hydratation de l'organisme: réactions hormonales in: Lacour JR (ed) Facteurs limitant l'endurance humaine. Comptes-rendus du colloque de St-Etienne, pp 38–42Google Scholar
  12. Flandrois R, Grandmontagne M, Mayet MH, Favier R, Frutoso J (1982) La consommation maximale d'oxygène chez le jeune français, sa variation avec Page, le sexe et l'entraînement. J Physiol (Paris) 78:186–194Google Scholar
  13. Gaesser GA, Brooks GA (1984) Metabolic bases of excess postexercise oxygen consumption: a review. Med Sci Sports Exerc 16:29–43PubMedGoogle Scholar
  14. Galbo H (1981) Endocrinology and metabolism during exercise. Int J Sports Med 2:203–211Google Scholar
  15. Haralambie G (1982) Enzymes activities in skeletal muscle of 1315 year-old adolescents. Bull Eur Physiopathol Respir 18:65–74PubMedGoogle Scholar
  16. Hermansen L, Hultman E, Saltin B (1967) Muscle glycogen during prolonged exercise. Acta Physiol Scand 71:129–139PubMedGoogle Scholar
  17. Hoelzer DR, Dalsky GP, Clutter WE, Shah SD, Hollszy JO, Cryer PE (1986) Hypoglycemia is prevented by redundant glucoregulatory systems, sympathochromaffin activation, and changes in islet hormone secretion. J Clin Invest 77:212–221PubMedGoogle Scholar
  18. Koubi HE, Desplanches D, Gabrielle C, Cottet-Emard JM, Sempore B, Favier R (1991) Exercise endurance and fuel utilization: a reevaluation of the effects of fasting. J Appl Physiol 70:1337–1343PubMedGoogle Scholar
  19. Lehmann M, Keul J, Korsten-Reck U (1981) Einfluß einer stufenweisen Laufbandergometrie bei Kindern und Erwachsenen auf die Plasmacatecholamine, die aerobe und anaerobe Kapazität. Eur J Appl Physiol 47:301–311Google Scholar
  20. Lehmann M, Keul J, Hesse A (1982) Zur aeroben und anaeroben Kapazitat sowie Catecholaminexkretion von Kindern und Jugendlichen wahrend langdauernder submaximaler Körperarbeit. Eur J Appl Physiol 8:135–145Google Scholar
  21. MacArdle WD, Katch FI, Katch VL (1981) Exercise physiology: energy, nutrition and human performance. Lea and Febiger, PhiladelphiaGoogle Scholar
  22. Macek M, Vavra V (1980) The adjustment of oxygen uptake at the onset of the exercise: a comparison between prepubertal boys and young adults. Int J Sports Med 1:70–72Google Scholar
  23. Macek M, Vavra J, Novosadova J (1976a) Prolonged exercise in prepubertal boys. I Cardiovascular and metabolic adjustment. Eur J Appl Physiol 35:291–298Google Scholar
  24. Macek M, Vavra J, Novosadova J (1976b) Prolonged exercise in prepubertal boys. II Changes in plasma volume and in some blood constituents. Eur J Appl Physiol 35:299–303Google Scholar
  25. Melin B, Eclache JP, Geelen G, Annat G, Allevard AM, Jarsaillon E, Zedibi A, Legros JJ, Gharib Cl (1980) Plasma AVP, neurophysin, renin activity and aldosterone during submaximal exercise performed until exhaustion in trained and untrained men. Eur J Appl Physiol 44:141–151Google Scholar
  26. Nobin A, Galck B, Ingemansson S, Jarhult J, Rosengren E (1977) Organization and function of the sympathetic innervation of human liver. Acta Physiol Scand [Suppl] 452:103–106Google Scholar
  27. Oseid S, Hermansen L (1971) Hormonal and metabolic changes during and after prolonged muscular work in prepubertal boys. Acta Paediatr Scand [Suppl] 217:147–153Google Scholar
  28. Parizkova J (1961) Total body fat and skinfold thickness in children. Metabolism 10:794–807PubMedGoogle Scholar
  29. Péquignot JM, Peyrin L, Favier R, Flandrois R (1979) Réponse adrénergique à l'exercice musculaire intense chez le sujet sédentaire en fonction de l'émotivité et de l'entraînement. Eur J Appl Physiol 40:117–135Google Scholar
  30. Péquignot JM, Peyrin L, Peres G (1980) Catecholamines-fuel interrelationships during exercise in fasting men. J Appl Physiol 48:109–113PubMedGoogle Scholar
  31. Pluto R, Burger P (1988) Normal values of catecholamines in blood plasma determined by high performance liquid chromatography with amperometric detection. Int J Sports Med [Suppl] 9:75–78Google Scholar
  32. Randle PJ, Newsholme A, Garland PB (1964) Regulation of glucose uptake by muscle. Effects of fatty acids, ketone bodies and pyruvate and of alloxan diabetes and starvation on the uptake and metabolic rate of glucose in rat heart and diaphragm muscles. Biochem J 93:652–665PubMedGoogle Scholar
  33. Tanner (1964) Physical and body composition. In: Carlson L (ed) Fitness, health and work capacity. Macmillan, New YorkGoogle Scholar
  34. Wirth A, Träger E, Scheele K, Mayer D, Diehm K, Reischle K, Weicker H (1978) Cardiopulmonary adjustment and metabolic response to maximal and submaximal physical exercise of boys and girls at different stages of maturity. Eur J Appl Physiol 39:229–240Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • P. Delamarche
    • 1
  • M. Monnier
    • 1
  • A. Gratas-Delamarche
    • 1
  • H. E. Koubi
    • 2
  • M. H. Mayet
    • 2
  • R. Favier
    • 2
  1. 1.Laboratoire S.T.A.P.S. Physiologie et Biomécanique de l'Exercice MusculaireUniversité de Rennes 2Rennes CedexFrance
  2. 2.U.R.A. 1341 CNRS Laboratoire de PhysiologieFaculté de Médecine de Grange BlancheLyon CedexFrance

Personalised recommendations