Skip to main content
Log in

Mathematical modeling of mixing in a horizontal rotating tubular bioreactor: “Simple flow” model

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The construction of the horizontal rotating tubular bioreactor (HRTB) represents a combination of a “thin-layer” bioreactor and a “biodisc” reactor. The bioreactor was made of a plastic tube whose interior was divided by the O-ring shaped partition walls. For the investigation of mixing properties in HRTB the temperature step method was applied. The temperature change in the bioreactor as a response to a temperature step in the inlet flow was monitored by six Pt-100 sensors (t 90 response time 0.08 s and resolution 0.002 °C) which were connected with an interface unit and personal computer. Mixing properties of the bioreactor were modeled using the modified “tank in series” concept which divided the bioreactor into ideally mixed compartments. A mathematical mixing model with “simple flow” was developed according to the physical model of the compartments network and corresponding heat balances. Numerical integration of an established set of differential equations was done by the Runge-Kutt-Fehlberg method. The final mathematical model with “simple flow” contained four adjustable parameters (N1,Ni, F cr andF p ) and five fixed parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A u m2 :

inner surface of bioreactor's wall

A ui m2 :

i-th part of inner surface of bioreactor's wall

A v m2 :

outlet surface of bioreactor's wall

A vi m2 :

i-th part of outlet surface of bioreactor's wall

C p kJ kg–1 K–1 :

heat capacity of liquid

C pr kJ kg–1 K–1 :

heat capacity of bioreactor's wall

D h–1 :

dilution rate

E °C °C–1 h–1 :

error of mathematical model

F cr dm3s–1 :

circulation flow in the model

F p dm3 s–1 :

back flow in the model

F t dm3s–1 :

inlet flow in the bioreactor

I °C:

intensity of temperature step, the difference in temperature between the temperature of the inlet liquid flow and the temperature of liquid in the bioreactor before the temperature step

K1 Wm–2K–1 :

heat transfer coefficient between the liquid and bioreactor's wall

K2 Wm–2K–1 :

heat transfer coefficient between the bioreactor's wall and air

m s kg:

mass of bioreactor's wall

L m:

length of bioreactor

L k m:

wetted perimeter of bioreactor

n min–1 :

rotational speed of bioreactor

n s :

number of temperature sensors

N1:

number of cascades

Ni:

number of compartments inside the cascade

Nu:

Nusselt number

Pr :

Prandtl number

r u m:

inner diameter of bioreactor

r v m:

outside diameter of bioreactor

Re :

Reynolds number

s(t) :

step function

t s:

time

T °C:

temperature

T c °C:

calculated temperature

T m °C:

measured temperature

T N1,Ni °C:

temperature of liquid in a defined compartment inside cascade

T N1,S °C:

temperature of defined part of bioreactor's wall

T S °C:

temperature of bioreactor's wall

T v °C:

temperature of liquid in bioreactor

T z °C:

temperature of surrounding air

V t dm3 :

volume of liquid in the bioreactor

λ kJm–1s–1 K–1 :

thermal conductivity of liquid in the bioreactor

ϱ kgm–3 :

density of liquid in the bioreactor

ν m2s–1 :

kinematic viscosity of liquid in the bioreactor

B :

\(\frac{{F_t N1Ni}}{{V_t }}\)

C :

\(\frac{{F_{cr} N1Ni}}{{V_t }}\)

D :

\(\frac{{F_p N1Ni}}{{V_t }}\)

E :

B+C+D

G1 :

\(K1\frac{{2r_u \Pi LNi}}{{V_t }}\)

G2 :

\(K1\frac{{2r_u \Pi LNi}}{{V_t }} + K2\frac{{2r_v \Pi LNi}}{{V_t }}\)

G3 :

\(K2\frac{{2r_v \Pi LNi}}{{V_t }}\)

A ui :

\(\frac{{2r_u \Pi LNi}}{{V_t }}\)

A vi :

\(\frac{{2r_v \Pi LNi}}{{V_t }}\)

Q 1 :

\(K1\frac{{A_{ui} }}{{m_s c_{pr} }}\)

Q 2 :

\(K1\frac{{A_{ui} }}{{m_s c_{pr} }} + K2\frac{{A_{vi} }}{{m_s c_{pr} }}\)

Q 3 :

\(K2\frac{{A_{vi} }}{{m_s c_{pr} }}\)

References

  1. Moser, A.: Imperfectly mixed bioreactor systems. In: Moo-Young, M. (Ed.): Comprehensive Biotechnology, vol. 1, pp. 77–95. Oxford: Pergamon Press 1985

    Google Scholar 

  2. Russel, T.W.F.;Dunn, I.J.;Blanch, H.W.: The tubular loop batch fermenter: Basic concepts. Biotechnol. Bioeng. 16 (1974) 1261–1272

    Google Scholar 

  3. Horvat, P.: Matematičko modeliranje miješanja u horizontalnim cijevnim reaktorima. Prehrambeno-technol. biotechnol. rev. 29 (1991) 43–45

    Google Scholar 

  4. Moser, A.: Tubular bioreactor: case study of bioreactor performance for industrial production and scientific research. Biotechnol. Bioeng. 37 (1991) 1054–1065

    Google Scholar 

  5. Moser, F.: Ein Rohrreaktor zur Abwasserreinigung. Verfahrenstechnik 11 (1977) 670–675

    Google Scholar 

  6. Wolfbauer, O.;Klettner, H.;Moser, F.: Reaction engineering models of biological waste water treatment and kinetics of activated sludge process. Chem. Eng. Sci. 33 (1978) 953–960

    Google Scholar 

  7. Lilly, M.D.;Dunnill, P.: Engineering aspects of enzyme reactors. Biotechnol. Bioeng. Symp. 3 (1972) 221–228

    Google Scholar 

  8. Nipkow, A.;Sonnleitner, B.;Fiechter, A.: Performance of a filter loop reactor using Zymomonas mobilis and validation of ethanol production model II. Journal of Biotechnology 4 (1986) 49–61

    Google Scholar 

  9. Mulligan, C.N.;Safi, B.F.;Groleau, D.: Continuous production of ammonium lactate by Streptococcus cremoris in a three —stage reactor. Biotechnol. Bioeng. 38 (1991) 1173–1181

    Google Scholar 

  10. delos Santos, B.;Honda, H.;Shiragami, N.;Kariya, M.;Unno, H.: Simulated-microcarrier motion and its effect on radial medium transfer inside a horizontally rotating cylindrical bioreactor (HRCB) for animal cell culture. Bioprocess Eng. 10 (1994) 5–14

    Google Scholar 

  11. Pirt, J.S.;Lee, Y.K.;Walach, M.K.;Pirt, M.W.;Balyuzi, H.H.M.;Bazin, M.J.: A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: design and performance. J. Chem. Tech. Biotechnol. 33 (1983) 35–39

    Google Scholar 

  12. Moser, A.: Ecological reactor operation: Multiple criteria design — case tubular bioreactors. In: Ecological Bioprocessing — Chances in New Applications, pp. 62–74. Graz: Verlag TU Graz 1991

    Google Scholar 

  13. Moser, A.: Dünnschichtreaktoren in der Biotechnologie. Chem. Ing. Tech. 49 (1977) 612–625

    Google Scholar 

  14. Moser, A.: Untersuchung des Gas/Flussigkeits Stofftransport im Dünnschichtfermentor. Chem Ing. Tech. 45 (1973) 1313–1317

    Google Scholar 

  15. Moser, A.: Die Verweilzeitverteilungs Characteristik eines gerührten Rohrfermentors. Verfahrenstechnik 7 (1973) 198–201

    Google Scholar 

  16. Moser, A.;Steiner, W.: Verweilzeitverteilungsverhalten eines Rohrreaktors mit Rückführung. Chem. Ing. Tech. 46 (1974) 695

    Google Scholar 

  17. Toda, K.;Park, Y.S.;Asakura, T.;Cheng, C.Y.;Ohtake, H.: High-rate acetic acid production in a shallow flow bioreactor. Appl. Microbiol. Biotechnol. 30 (1989) 559–563

    Google Scholar 

  18. Park, Y.S.;Ohtake, H.;Toda, K.: A kinetic study of acetic acid production by liquid-surface cultures of Acetobacter aceti. Appl. Microbiol. Biotechnol. 33 (1990) 259–263

    Google Scholar 

  19. Levenspiel, O.: Dispersion and Cascade model. In: Chemical Reaction Engineering, pp. 270–294. London: John Wiley & Sons 1972

    Google Scholar 

  20. Mayr, B.;Horvat, P.;Moser, A.: Engineering approach to mixing quantification in bioreactors. Bioprocess Eng. 8 (1992) 137–143

    Google Scholar 

  21. Mayr, B.;Nagy, E.;Horvat, P.;Moser, A.: Scale-up on basis of structured mixing models: a new concept. Biotechnol. Bioeng. 43 (1994) 195–206

    Google Scholar 

  22. Jury, W.: Mixing in Bioreactors. Ph. D. Thesis, Institute of Biotechnology, Graz University of Technology (1989)

  23. Burghardt, D.M.: Heat transfer and heat exchangers. In: Engineering Thermodynamics with Applications. pp. 485–518. New York: Harper & Row Publ. 1986

    Google Scholar 

  24. Burden, R.L.;Faires, J.D.: Error control and the Runge-Kutta-Fehlberg method. In: Numerical Analysis, pp. 251–255. Boston: PWS-KENT Publ. 1989

    Google Scholar 

  25. Oosterhuis, N.M.G.;Kossen, N.W.F.: Modelling and scaling-up of bioreactor. In: Brauer, H. (Ed.): Fundamentals of Biochemical Engineering, vol. 2, pp. 571–605. Weinheim: Deerfield Beach FL VCH 1985

    Google Scholar 

  26. Moser, A.;Mayr, B.;Jury, W.;Steiner, W.;Horvat, P.: Mathematical models for mixing in deep jet bioreactors: analysis. Bioprocess Eng. 7 (1991) 171–176

    Google Scholar 

  27. Moser, A.;Mayr, B.;Jury, W.;Steiner, W.;Horvat, P.: Mathematical models for mixing in deep jet bioreactors: calculation of parameters. Bioprocess Eng. 7 (1991) 177–181

    Google Scholar 

  28. Reuss, M.;Bajpai, R.K.: Performance of stirred bioreactors in the light of mass and energy distributions. In: Ho, C.S.; Wang, D.IC. (Ed.): Biochemical Engineering — Bioreactor Design and Operation, pp. 2–83. Stonehan/MA (USA): Butterworth publish 1987

    Google Scholar 

  29. Khang, S.J.;Levenspiel, O.: New scale up and design method for stirrer agitated batch mixing vessels. Chem. Eng. Sci. 31 (1976) 569–577

    Google Scholar 

  30. Prandit, A.B.;Joshi, J.B.: Mixing in mechanically agitated gas — liquid contactors bubble columns and modified bubble columns. Chem. Eng. Sci. 38 (1983) 1189–1215

    Google Scholar 

  31. Mukataka, S.;Kataoka, H.;Takahashi, J.: Circulation time and degree of fluid exchange between upper and lower circulation regions in stirred vessel with a dual impeller. J. Ferment. Technol. 59 (1981) 303–307

    Google Scholar 

  32. Bajpai, R.K.;Reuss, M.: Coupling of mixing and microbial kinetics for evaluating the performance of bioreactors. Can. J. Chem. Eng. 60 (1982) 384–392

    Google Scholar 

  33. Bryant, J.: Characterization of mixing in fermenters. Adv. Biochem. Eng. 5 (1977) 101–123

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šantek, B., Horvat, P., Novak, S. et al. Mathematical modeling of mixing in a horizontal rotating tubular bioreactor: “Simple flow” model. Bioprocess Engineering 14, 195–204 (1996). https://doi.org/10.1007/BF01464734

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01464734

Keywords

Navigation