Advertisement

Journal of Mammalian Evolution

, Volume 2, Issue 2, pp 117–131 | Cite as

On the systematic position ofChaetomys subspinosus (Rodentia: Caviomorpha) based on evidence from the incisor enamel microstructure

  • Thomas Martin
Article

Abstract

We have studied the incisor enamel microstructure ofChaetomys subspinosus and other possibly closely related caviomorph rodents.Chaetomys subspinosus lacks the important synapomorphy of the Octodontoidea, reactangular plate-like interprismatic matrix (IPM) in the portio interna (PI) of the incisor Schmelzmuster. Therefore its transfer from the Erethizontidae to the Echimyidae, as proposed by Patterson and Wood (Bull. Mus. Comp. Zool. 149, 371–543, 1982) based on retention of dP4, is contested. The parallel to acute angular IPM in the PI ofChaetomys and the Erethizontidae is a symplesiomorphy and does not indicate close relationship. Contrary to previous claims, a posterior carotid foramen is also retained inChaetomys. Chaetomys is characterized by an unusual thin enamel which is considered primitive after outgroup comparison. Therefore, it is proposed to leaveChaetomys in the monospecific erethizontid subfamily Chaetomyinae, until additional information on the species is available.

Key Words

enamel microstructure evolution Chaetomys incisors Caviomorpha 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Avila-Pires, D. G. de (1967). The type locality ofChaetomys subspinosus (Olfers, 1818) (Rodentia: Caviomorpha).Rev. Brasil. Biol. 27: 177–179.Google Scholar
  2. Bugge, J. (1974a). The cephalic arterial system in insectivores, primates, rodents, and lagomorphs, with special reference to the systematic classification.Acta Anat. 87 Suppl. 62: 1–160.PubMedGoogle Scholar
  3. Bugge, J. (1974b). The cephalic arteries of hystricomorph rodents.Symp. Zool. Soc. Lond. Symp. 34: 61–78.Google Scholar
  4. Eisenberg, J. F. (1989).Mammals of the Neotropics. The Northern Neotropics 1, University of Chicago Press, Chicago.Google Scholar
  5. Ellermann, J. R. (1940).The Families and Genera of Living Rodents. British Museum (Natural History), London, (Reprint, 1966).Google Scholar
  6. Emmons, L. H., and Feer, F. (1990).Neotropical Rainforest Mammals, a Field Guide, University of Chicago Press, Chicago.Google Scholar
  7. Grassé, P.-P. (1955),Traité de Zoologie 17,2,Mammifères, Masson, Paris.Google Scholar
  8. Gray, J. E. (1843). Account of two new species of bats, a species of the family Hystricidae, and a newManis.Proc. Zool. Soc. Lond. 11: 20–22.Google Scholar
  9. Koenigswald, W. v. (1980). Schmelzmuster und Morphologie in den Molaren der Arvicolidae (Rodentia).Abh. Senckenb. Naturf. Ges. 539: 1–129.Google Scholar
  10. Koenigswald, W. v. (1988). Enamel modification in enlarged front teeth among mammals and the various possible reinforcements of the enamel.Mém. Mus. Natl. Hist. Nat. C 53: 148–165.Google Scholar
  11. Koenigswald, W. v., and Pfretzschner, H. U. (1987). Hunter-Schreger-Bänder im Zahnschmelz von Säugetieren: Anordnung und Prismenverlauf.Zoomorphology 106: 329–338.Google Scholar
  12. Koenigswald, W. v., and Pfretzschner, H. U. (1991). Biomechanics in the enamel of mammalian teeth. InConstructional Morphology and Biomechanics, N. Schmidt-Kittler and K. Vogel eds., pp. 113–125. Springer Verlag, Berlin-Heidelberg.Google Scholar
  13. Korvenkontio, V. A. (1934). Mikroskopische Untersuchungen an Nagerincisiven unter Hinweis auf die Schmelzstruktur der Backenzähne.Ann. Zool. Soc. Zool.-Bot. Fenn. Vanamo 2: 1–274.Google Scholar
  14. Lehner, J., and Plenk, H. (1936). Die Zähne. In:Handbuch der mikroskopischen Anatomie des Menschen 5/3, W. v. Möllendorff ed., pp. 447–708, Berlin.Google Scholar
  15. Luckett, W. P. (1985), Superordinal and intraordinal affinities of rodents: Developmental evidence from the dentition and placentation. In:Evolutionary Relationships Among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 227–276. Plenum Press, New York.Google Scholar
  16. Martin, T. (1992). Schmelzmikrostruktur in den Inzisiven alt-und neuweltlicher hystricognather Nagetiere.Palaeovertebrata, Mém. extra 1–168.Google Scholar
  17. Martin, T. (1993). Early rodent incisor enamel evolution: Phylogenetic implications.J. Mamm. Evol. 1: 227–254Google Scholar
  18. Martin, T. (1994). African origin of caviomorph rodents is indicated by incisor enamel microstructure.Paleobiology 20: 5–13.Google Scholar
  19. Miller, G. S., and Gidley, J. W. (1918). Synopsis of the supergeneric groups of rodents.J. Wash. Acad. Sci. 8: 431–448.Google Scholar
  20. Nowak, R. M., and Paradiso, J. L. (1983).Walker's Mammals of the World, 4th ed., Johns Hopkins University Press, Baltimore.Google Scholar
  21. Olfers, I. v. (1818). Bemerkungen zu Illiger's Ueberblick der Säugethiere, nach ihrer Vertheilung über die Welttheile, rücksichtlich der Südamerikanischen Arten (Species). From: Eschwege, W. C. v.: Journal von Brasilien, oder vermischte Nachrichten aus Brasilien, auf wissenschaftlichen Reisen gesammelt. In:Neue Bibliothek der wichtigsten Reisebeschreibungen zur Erweiterung der Erd-und Völkerkunde,15, F. J. Bertuch, ed., pp. 193–237, Verlag des Landes-Industrie-Comptoirs, Weimar.Google Scholar
  22. Oliver, W. L. R., and Santos, I. B. (1991). Threatened endemic mammals of the Atlantic forest region of Southeast Brazil.Spec. Sci. Rep. Jersey Wildlife Preserv. Trust 4: 1–125.Google Scholar
  23. Patterson, B., and Wood, A. E. (1982). Rodents from the Deseadan Oligocene of Bolivia and the relationships of the Caviomorpha.Bull. Mus. Comp. Zool. 149: 371–543.Google Scholar
  24. Pfretzschner, H. U. (1988). Structural reinforcement and crack propagation in enamel.Mém. Mus. Natl. Hist. Nat. Paris C 53: 133–143.Google Scholar
  25. Pfretzschner, H. U. (1994). Biomechanik der Schmelzmikrostruktur in den Backenzähnen von Großsäugern.Palaeontographica A (in press).Google Scholar
  26. Sahni, A. (1980). SEM studies of Eocene and Siwalik rodent enamels.Geosci. J. 1/2: 21–30.Google Scholar
  27. Sahni, A. (1985). Enamel structure of early mammals and its role in evaluating relationships among rodents. In:Evolutionary Relationships Among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 133–150, Plenum Press, New York.Google Scholar
  28. Sarich, V. M., and Cronin, J. E. (1980). South American mammal molecular systematies, evolutionary clocks, and continental drift. In:Evolutionary Biology of the New World Monkeys and Continental Drift, R. L. Ciochon and A. B. Chiarelli, eds., pp. 347–368, Plenum Press, New York.Google Scholar
  29. Schroeder, H. E. (1987).Orale Strukturbiologie, Thieme Verlag, Stuttgart, New York.Google Scholar
  30. Stehlin, H. G., and Schaub, S. (1951). Die Trigonodontie der simplicidentaten Nager.Schweizer paläont. Abh. 67: 1–385.Google Scholar
  31. Tomes, J. (1850). On the structure of the dental tissues of the order Rodentia.Phil Trans. Roy. Soc. Lond. 1850: 529–567.Google Scholar
  32. Wahlert, J. H. (1968). Variability of rodent incisor enamel as viewed in thin section, and the microstructure of the enamel in fossil and Recent rodent groups.Brev. Mus. Comp. Zool. 309: 1–18.Google Scholar
  33. Wahlert, J. H. (1984). Hystricomorphs, the oldest branch of the Rodentia.Ann. N.Y. Acad. Sci. 435: 356–357.Google Scholar
  34. Wahlert, J. H. (1989). The three types of incisor enamel in rodents. In:Papers of Fossil Rodents in Honour of Albert Elmer Wood, Science Series, C. C. Black and M. Dawson, eds., pp. 7–16, Los Angeles County Museum.Google Scholar
  35. Wahlert, J. H., and Koenigswald, W. v. (1985). Specialized enamel in incisors of eomyid rodents.Am. Mus. Novitates 2832: 1–12.Google Scholar
  36. Wied, Prinz Maximilian zu (1826).Beiträge zur Naturgeschichte von Brasilien 2, Abteilung Säugtiere, Weimar.Google Scholar
  37. Wood, A. E., and Patterson, B. (1959). The rodents of the Deseadan Oligocene of Patagonia and the beginnings of South American rodent evolution.Bull. Mus. Comp. Zool. 120: 282–428.Google Scholar
  38. Woods, C. A. (1993). Suborder Hystricognathi. In:Mammal Species of the World, D. E. Wilson and D. M. Reeder, eds., pp. 771–806, Smithonian Institution Press, Washington, DC, London.Google Scholar
  39. Woods, C. A., and Hermanson, J. W. (1985). Myology of hystricognath rodents: An analysis of form, function, and phylogeny. In:Evolutionary Relationships Among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 515–548, Plenum Press, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Thomas Martin
    • 1
  1. 1.Institut für PaläontologieFreie UniversitätBerlinGermany

Personalised recommendations