Skip to main content
Log in

Heat transfer for non-Newtonian laminar flow in internally finned pipes with uniform temperature

Wärmeübergang bei nicht-Newtonscher Laminarströmung in innenberippten Rohren gleichförmiger Temperatur

  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

An analysis is presented for fully developed laminar convective heat transfer of non-Newtonian power-law fluids in pipes with internal longitudinal fins and uniform outside wall temperature. The governing momentum and energy equations have been solved numerically, with the influence of fin conductance. The distributions of fin temperature, fluid temperature and local heat flux (both at finned and unfinned surfaces) are presented. These are shown to be strongly dependent on finned pipe geometry, fluid flow behavior index and the fin conductance. Values of overall Nusselt number indicated significant heat transfer enhancement over finless pipes. The flow behavior index affects the no. of fins which maximizes the overall Nusselt number.

Zusammenfassung

Die Untersuchung bezieht sich auf den konvektiven Wärmeübergang nicht-Newtonscher Potenzgesetz-Fluide in innenberippten Rohren bei vollausgebildeter Laminarströmung und gleichförmiger Außenwandtemperatur. Die Grundgleichungen für Impuls und Energie wurden numerisch unter Berücksichtigung der Rippenleitfähigkeit gelöst. Dargestellt sind die Verläufe der Rippen- und Fluidtemperatur sowie des lokalen Wärmeflusses, sowohl an berippten wie unberippten Flächen. Sie werden entscheidend von der Rippengeometrie, der Rippenleitfähigkeit und dem Viskositäts-index beeinflußt. Die gemittelten Nusselt-Zahlen zeigen, daß sich durch Berippung eine erhebliche Steigerung des Wärmeübergangs erreichen läßt. Die Anzahl der Rippen für welche die gemittelte Nusselt-Zahl einen Maximalwert erreicht, ist eine Funktion des Viskositätsindex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A f :

dimensionless flow are of the pipe, Eq. (11)

a f :

flow area of the pipe

C p :

specific heat capacity of fluid

H :

dimensionless fin height,h/r 0

h :

fin height

\(\bar h\) :

average heat transfer coefficient at solid-fluid interface

K :

fin conductance parameter, βk s /k f

k f :

thermal conductivity of fluid

k s :

thermal conductivity of fin

M :

number of fins

m :

consistency index for non-Newtonian power-law fluids

n :

flow behavior index

Nu :

Nusselt number, Eqs. (14) and (15)

p :

pressure

Q :

total heat transfer rate at solid fluid interface

\(\bar q\) :

average heat flux,Q/[2Mr 0+h)]

q f :

local fin heat flux

\(\bar q_f \) :

average fin heat flux

\(\bar q_w \) :

average heat flux at outer pipe-wall,Q/(2πr 0)

q θ :

local heat flux at unfinned surface

\(\bar q_\theta \) :

average heat flux at unfinned surface

r :

radial coordinate

r 0 :

radius of pipe

\(\bar r\) :

dimensionless radial coordinater/r 0

\(\bar r_i \) :

dimensionless radial coordinate at tip of fin

T :

temperature

T b :

bulk temperature

T w :

tube wall temperature

u :

dimensionless velocity

u b :

dimensionless bulk velocity

u z :

axial velocity

z :

axial coordinate

α:

half the angle between the flanks of two adjacent fins

β:

half the angle subtended by a fin

γ:

half the angle between the center-lines of two adjacent fins

η:

apparent viscosity of non-Newtonian power law fluid, Eq. (2)

θ:

angular coordinate

ϕ:

dimensionless temperature, Eq. (9)

φ b :

dimensionless bulk temperature

References

  1. Bergles, A. E.;Joshi, S. D.: Augmentation Techniques for Low Reynolds Number in Tube Flow, In Low Reynolds Number Flow Heat Exchangers, Kakac, S. K.; Sah, R. K.; Bergles, A. E., Eds., Hemisphere, Washington D.C. 1983

    Google Scholar 

  2. Shivkumar, C.; Rao, M. R.: Studies on Compound Augmentation of Laminar Flow Heat Transfer to Generalized Power Law Fluids in Spirally Corrugated Tubes by Means of Twisted Tape Inserts. ASME Proceedings of National Heat Transfer Conference, Houston, Vol. 1, 1988

  3. Dasmahaparta, J. K.; Reo, M. R.: Augmentation of Uniform Wall Temperature Tube Side Heat Transfer to Power Law Fluids in Laminar Flow by Means of Twisted Tape inserts. Proceedings of the Second World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Dubrovnik, Yugoslavia, June 1991

  4. Manglik, R. M.;Bergles, A. E.: A Correlation for Laminar Flow Enhanced Heat Transfer in Uniform Wall Temperature Circular Tubes with Twisted Tape Inserts. Advances in Enhanced Heat Transfer (1987) Jensen, M. K.; Carey, V. P., Eds.: HTD-Vol. 68, ASME, New York, 1987

    Google Scholar 

  5. Manglik, R. M.; Bergles, A. E.; Joshi, S. D.: Augmentation of Heat Transfer to Laminar Flow of Non-Newtonian Fluids in Uniformly Heated Tubes with Twisted Tape Inserts. Proceedings of the First World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Dubrovnik, Yugoslavia, September 4–9, 1988

  6. Nadakumar, K.; Masliyah, J. H.: Fully Developed Viscous Flow in Internally Finned Tubes. The Chemical Engineering Journal 10 (1975)

  7. Soliman, H. M.; Feingold, A.: Analysis of Fully Developed Laminar Flow in Longitudinal Internally Finned Tubes. The Chemical Engineering Journal 14 (1977)

  8. Masliyah, J. H.; Nandakumar, K.: Heat Transfer in Internally Finned Tubes. ASME Journal of Heat Transfer 98 (1976)

  9. Soliman, H. M.; Feingold, A.: Analysis of Heat Transfer in Internally Finned Tubes Under Laminar Flow Conditions. Proceedings of the sixth International Heat Transfer Conference, Vol. 2, 1978

  10. Soliman, H. M.: The Effect of Fin Material on Laminar Heat Transfer Characteristics of Internally finned Tubes. Symposium on Advances in Enhanced Heat Transfer, The 18th National Heat Transfer Conference, 1979

  11. Soliman, H. M.; Chau, T. S.; Trupp, A. C.: Analysis of Laminar Heat Transfer in Internally Finned Tubes with Uniform Outside Wall Temperature. Transactions of the ASME, Journal of Heat Transfer 102 (1980)

  12. Embaby, M. H.; Hegazy, A. S.: Laminar Flow of Non-Newtonian Fluids in Internally Finned Pipes. Proceeding of the Eighth International Conference for Mechanical Power Engineering, Alexandria, April 27–29, 1993

  13. Patanker, S. V.: Numerical Heat Transfer and Fluid Flow. McGraw-Hill, 1980

  14. Watkinson, A. P.; Milletti, D. L.; Kubanek, G. R.: Heat Transfer and Pressure Drop of Internally Finned Tubes in Laminar Oil Flow. ASME Paper No. 75-HT-41, 1975

  15. Carnavos, T. C.: Cooling Air in Turbulent Flow with Internally Finned Tubes. AIChE Paper, Presented at the 17th National Heat Transfer Conference, Salt Lake City, Utah, Aug. 1977

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegazy, A.S., Embaby, M.H. Heat transfer for non-Newtonian laminar flow in internally finned pipes with uniform temperature. Heat and Mass Transfer 30, 361–367 (1995). https://doi.org/10.1007/BF01463927

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01463927

Keywords

Navigation