Skip to main content
Log in

Flow and heat transfer due to impulsive motion of a cone in a viscous fluid

Impuls-und Wärmeübertragung an einem plötzlich in Bewegung versetzten Konus in einem zähen Fluid

  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Numerical solution has been obtained for the development of the flow over a cone which is impulsively set into motion. Initially the flow is described by the solution of Rayleigh and then it tends to the ultimate steady state solution of Falkner-Skan equation. But due to the leading edge effect the semi-similar equation describing the transient flow changes its character after certain time and the solution depends also on the ultimate steady state solution of the Falkner-Skan equation. A second-order upwind difference scheme has been used for discretisation. The temperature distribution and heat transfer has also been obtained for constant wall temperature as well as for constant heat flux at the wall. With the increase ofm, Falkner-Skan parameter, the magnitude of skin friction and wall heat transfer increases. It has been found that form≥−0.275 flow separation does not occur.

Zusammenfassung

Es wird eine numerische Lösung für die sich entwickelnden Strömungs-und Temperaturfelder an einem plötzlich in Bewegung versetzten Konus angegeben. Anfänglich läßt sich die Strömung durch die Lösung von Rayleigh beschreiben, im stationären Endzustand durch die Lösung der Falkner-Skan Gleichung. Wegen des Eintrittseffekts an der Konusstirn ändert die den nichtstationären Strömungszustand beschreibende halb-ähnliche Gleichung nach einer bestimmten Zeit ihren Charakter und die Lösung hängt zusätzlich von der stationären Endlösung der Falkner-Skan Gleichung ab. Für die Diskretisierung wird ein rückseitiges Differenzschema zweiter Ordnung verwendet. Die Berechnung des Temperaturfeldes und des Wärmeübergangs erfolgt sowohl für konstante Wandtemperatur, wie für konstanten Wärmefluß. Mit zunehmenden Falkner-Skan Parameterm steigen auch Wandreibung und Wärmeübertragung. Fürm≥−0,275 tritt keine Ablösung auf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C p :

specific heat at a constant pressure

f :

velocity function

F :

non-dimensional velocity function

k :

thermal conductivity

m :

Falkner-Skan parameter

Pr :

Prandtl number

t :

time

t * :

=(m+3)×t/3

T :

temperature

u :

velocity inx direction

U :

free stream velocity

v :

velocity iny direction

V :

stands for eitherF or θ

x :

coordinate parallel to the wall

y :

coordinate normal to the wall

α i ,i=1, 2, 3, 4, 5, 6:

are variable co-efficients

η:

semi-similar variable

θ:

non-dimensional temperature function

μ:

co-efficient of viscosity

v :

kinematic viscosity

ζ:

semi-similar variable

τ:

non-dimensional time

ψ:

stream function

e :

at infinity

i, j :

at grid point (i, j)

w :

at the wall

η:

derivative with respect to η

ξ:

derivative with respect to ξ

′:

derivative with respect to η

References

  1. Stewartson, K.: On the impulsive motion of a flat plate in a viscous fluid. Quart. J. Mech. Appl. Math. 4 (1951) 182–198

    Google Scholar 

  2. Hall, M. G.: The boundary layer over an impulsively started flat plate. Proc. Roy. Soc. Ser. A 310 (1969) 401–414

    Google Scholar 

  3. Dennis, S. C. R.: The motion of a viscous fluid past an impulsively started semi-infinite flat plate. J. Inst. Math. Appl. 10 (1972) 105–117

    Google Scholar 

  4. Wang, J. C. T.: On the numerical methods for the singular parabolic equations in fluid dynamics. J. Comp. Phys. 52 (1983) 464–479

    Article  Google Scholar 

  5. Smith, S. H.: The impulsive motion of a wedge in a viscous fluid. ZAMP 18 (1967) 508–522

    Google Scholar 

  6. Williams, J. C.;Rhyne, T. B.: Boundary layer development on a wedge impulsively set into motion. SIAM J. Appl. Math. 38 (1980) 215–224

    Article  Google Scholar 

  7. Wang, C. Y.: Boundary layers on rotating cones, discs and axisymmetric surfaces with a concentrated heat surfaces. Acta Mechanica 81 (1990) 245–251

    Article  Google Scholar 

  8. Watanabe, T.;Pop, I.: Laminar boundary layers on rotating axisymetric surfaces with suction or injection. Applied Scientific Research 52 (1994) 102–114

    Article  Google Scholar 

  9. Hen, J. L.;Falkner, S.: Accurate values of the exponent governing potential flow about semi-infinite cones. AIAA J. 3 (1965) 767

    Google Scholar 

  10. Williams, J. C.;Johnson, W. D.: Semi similar solutions to unsteady boundary layer flow including separation. AIAA J. 12 (1974) 1388–1393

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharyya, S., Pal, A. & Datta, N. Flow and heat transfer due to impulsive motion of a cone in a viscous fluid. Heat and Mass Transfer 30, 303–307 (1995). https://doi.org/10.1007/BF01463920

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01463920

Keywords

Navigation