Skip to main content
Log in

Functional enhancement of a non-equilibrium plasma jet by seeding in the applied magnetic field

Funktionelle Verstärkung eines sich nicht im Gleichgewicht befindenden Plasmastrahls durch Impfen im angelegten Magnetfeld

  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The experimental study is conducted to clarify the functional enhancement of a non-equilibrium argon plasma jet by seeding potassium in the applied magnetic field to extend its industrial applications. It is shown that the plasma parameters such as electron number density and electron temperature increase considerably by seeding especially in the applied magnetic field, which results in the easy enhancement of transport properties such as electrical conductivity and electron thermal conductivity. Finally, the infrared thermography is shown to visualize the relative variation of radiative temperature field comparing both with seeding and without seeding.

Zusammenfassung

Die experimentelle Studie wurde durchgeführt, um die funktionelle Verstärkung eines sich nicht im Gleichgewicht befindenden Argonplasmastrahls durch Impfen mit Kalium im angelegten Magnetfeld zur Erweiterung seiner industriellen Anwendungen zu klären. Es wird gezeigt, daß die Plasmaparameter, wie Elektronenzahldichte und Elektronentemperatur, durch die Impfung beträchtlich zunehmen, besonders im angelegten Magnetfield, was auf einfache Weise eine Verstärkung der Transporteigenschaften, wie elektrische Leitfähigkeit und Elektronenleitfähigkeit, ermöglicht. Abschließend wird die Infrarotthermographie eingesetzt, um die relative Variation der Strahlungstemperatur mit und ohne Impfung zu visualisieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

magnetic flux density (T)

\(\bar C_e \) :

average thermal velocity of electron (m/s)

e :

electron charge=1.602×10−19 (C)

I is :

ion saturation current (A)

I p :

probe current (A)

k :

Boltzman constant=1.38×10−23 (J/K)

l e :

free path of electron (m)

m i :

mass of ion (kg)

m i :

mass of electron (kg)

n e :

electron number density (m−3)

r :

radial coordinate (m)

S p :

surface area of Langmuir probe (m2)

T e :

electron temperature (K)

V p :

probe voltage (V)

z :

axial coordinate (m)

κ:

constant

λ e :

electron thermal conductivity (W/m·K)

μ e :

electron mobility

ν eH :

collisional frequency between electron and heavy particles (Hz)

σ e :

electrical conductivity (mho/m)

References

  1. Nishiyama, H.: Industrial applications of plasma flow. Science of Machine 44 (1992) 193–198 (in Japanese)

    Google Scholar 

  2. Kuriki, K.;Okada, O.: Experimental study of a plasma flow in a magnetic nozzle. The Physics of Fluids 13 (1970) 2262–2269

    Article  Google Scholar 

  3. Siambis, J. G.; Johnson, B. W.; Kramer, W. R.: Streaming plasma interaction with variable longitudinal magnetic fields. Proceedings of the Intern. Symposium on Dynamics of Ionized Gases (1971) 355–361

  4. Yoshikawa, T.;Oda, G.;Murasaki, T.: Experimental investigation on supersonic plasma flow through diverging lines of magnetic force. Bulletin of the JSME 18 (1975) 707–713

    Google Scholar 

  5. Hayashi, S.;Shimizu, Y.;Harada, N.;Yamasaki, H.;Shioda, S.: Interaction of a plasma stream with neutral gases under an aligned magnetic field. J. Physical Society of Japan 55 (1986) 3879–3888

    Google Scholar 

  6. Fujita, H.;Okuno, Y.;Ohtsu, Y.;Yagura, S.: Control of plasma parameters and electric fields in a microwave-rf plasma. J. Applied Physics 67 (1990) 6114–6117

    Article  Google Scholar 

  7. Takeda, K.: Oscillating plasma arc by external AC magnetic field. Proceedings of the international workshop on plasma jets in the development of new materials technology (1990) 485–492

  8. Sasoh, A.;Arakawa, Y.: Electromagnetic effects in an applied-field magnetoplasmadynamic thruster. J. Propulsion of Power 8 (1992) 98–102

    Google Scholar 

  9. Dixit, N. S.;Venkatramani, N.;Rohatgi, V. K.: Measurement of temperature, electrical conductivity and ion density of seeded combustion plasmas. Energy Convers. Mgmt. 27 (1987) 103–109

    Article  Google Scholar 

  10. Nishiyama, H.;Sato, T.;Kamiyama, S.: Precise control of characterization of a low pressure plasma jet by applying the magnetic field. Proceedings of the Tenth International Conference on Gas Discharges and Their Applications II (1992) 778–781

    Google Scholar 

  11. Nishiyama, H.;Saisu, T.;Okubo, M.;Kamiyama, S.: Numerical simulation of a low pressure plasma jet in the applied magnetic field. Proceedings of the 11th International Symposium on Plasma Chemistry 1 (1993) 284–289

    Google Scholar 

  12. Sato, T.; Nishiyama, H.; Kamiyama, S.: Magnetic control of a low pressure plasma pipe flow. Proceedings of the Third JSME/KSME Fluids Engineering Conference (1994) 260–264

  13. Stefnov, B.;Veefkind, A.;Zarkova, L.: Thin free arcs in alkali-seeding noble gases. IEEE Transactions on Plasma Science 17 (1989) 51–59

    Article  Google Scholar 

  14. Kerrebrock, J. L.;Hoffman, M. A.: Nonequilibrium ionization due to electron heating. AIAA J. 2 (1964) 1080–1087

    Google Scholar 

  15. Mitchner, M.;Kruger, Jr. Ch. H.: Partially Ionized Gases, 92. Wiley, New York (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishiyama, H., Sato, T., Veefkind, A. et al. Functional enhancement of a non-equilibrium plasma jet by seeding in the applied magnetic field. Heat and Mass Transfer 30, 291–296 (1995). https://doi.org/10.1007/BF01463918

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01463918

Keywords

Navigation