Skip to main content
Log in

On the laminar forced convection with axial conduction in a circular tube with exponential wall heat flux

Über laminare Zwangskonvektion mit Längswärmeleitung in einem Kreisrohr mit exponentiell veränderlichem Wandwärmefluß

  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The values of the fully developed Nusselt number for laminar forced convection in a circular tube with axial conduction in the fluid and exponential wall heat flux are determined analytically. Moreover, the distinction between the concepts of bulk temperature and mixing-cup temperature, at low values of the Peclet number, is pointed out. Finally it is shown that, if the Nusselt number is defined with respect to the mixing-cup temperature, then the boundary condition of exponentially varying wall heat flux includes as particular cases the boundary conditions of uniform wall temperature and of convection with an external fluid.

Zusammenfassung

Es werden die Endwerte der Nusselt-Zahlen für vollausgebildete laminare Zwangskonvektion in einem Kreisrohr mit Längswärmeleitung und exponentiell veränderlichem Wandwärmefluß analytisch ermittelt. Besondere Betonung liegt auf dem Unterschied zwischen den Konzepten für die Mittel- und die Mischtemperatur bei niedrigen Peclet-Zahlen. Schließlich wird gezeigt, daß bei Definition der Nusselt-Zahl bezüglich der Mischtemperatur die Randbedingung exponentiell veränderlichen Randwärmeflusses die Spezialfälle konstanter Wandtemperatur und konvektiven Wärmeaustausches mit einem umgebenden Fluid einschließt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A n :

dimensionless coefficients employed in the Appendix

Bi :

Biot numberBi=h e r 0

c n :

dimensionless coefficients defined in Eq. (17)

c p :

specific heat at constant pressure of the fluid within the tube, [J kg−1 K−1]

f :

solution of Eq. (15)

h 1,h 2 :

specific enthalpies employed in Eqs. (2) and (4), [J kg−1]

h e :

convection coefficient with a fluid outside the tube, [W m−2 K−1]

\(\dot m\) :

rate of mass flow, [kg s−1]

Nu :

bulk Nusselt number,2r 0 q w /[λ(T w T b )]

Nu H :

fully developed value of the bulk Nusselt number for the boundary condition of uniform wall heat flux

Nu T :

fully developed value of the bulk Nusselt number for the boundary condition of uniform wall temperature

Nu * :

mixing Nusselt number,2r 0 q w /[λ(T w T m )]

Nu * C :

fully developed value of the mixing Nusselt number for the boundary condition of convection with an external fluid

Nu * H :

fully developed value of the mixing Nusselt number for the boundary condition of uniform wall heat flux

Nu * T :

fully developed value of the mixing Nusselt number for the boundary condition of uniform wall temperature

Pe :

Peclet number, 2ūr 0

q 0 :

wall heat flux atx=0, [W m−2]

q w :

wall heat flux, [W m−2]

r :

radial coordinate, [m]

r 0 :

radius of the tube, [m]

s :

dimensionless radius,s=r/r 0

T :

temperature, [K]

T 0 :

temperature constant employed in Eq. (14), [K]

T :

reference temperature of the fluid external to the tube, [K]

T b :

bulk temperature, [K]

T m :

mixing or mixing-cup temperature, [K]

T w :

wall temperature, [K]

u :

velocity component in the axial direction, [m s−1]

ū :

mean value ofu, [m s−1]

x :

axial coordinate, [m]

α:

thermal diffusivity of the fluid within the tube, [m2 s−1]

β:

exponent in wall heat flux variation, [m−1]

\(\hat \beta \) :

dimensionless parameter\(\hat \beta = Pe r_0 \beta \)

ϑ:

dimensionless temperature ϑ=(T w T)/(T w T b )

ϑ* :

dimensionless temperature ϑ*=(T w T)/(T w T m )

λ:

thermal conductivity of the fluid within the tube, [W m−1 K−1]

ϱ:

density of the fluid within the tube, [kg m−3]

References

  1. Shah, R. K.;London, A. L.: Laminar Flow Forced Convection in Ducts. New York: Academic Press, 1978

    Google Scholar 

  2. Michelsen, M. L.;Villadsen, J.: The Graetz problem with axial heat conduction. Int. J. Heat and Mass Transfer 17 (1974) 1391–1402

    Article  Google Scholar 

  3. Jones, A. S.: Extensions to the solution of the Graetz problem. Int. J. Heat and Mass Transfer 14 (1971) 619–623

    Article  Google Scholar 

  4. Papoutsakis, E.;Ramkrishna, D.;Lim, H. C.: The extended Graetz problem with Dirichlet wall boundary conditions. Appl. Sci. Res. 36 (1980) 13–34

    Google Scholar 

  5. Ebadian, M. A.;Zhang, H. Y.: An exact solution of extended Graetz problem with axial heat conduction. Int. J. Heat and Mass Transfer 32 (1989) 1709–1717

    Article  Google Scholar 

  6. Hsu, C.-J.: An exact analysis of low Peclet number thermal entry region heat transfer in transversely nonuniform velocity fields. AIChE J. 17 (1971) 732–740

    Article  Google Scholar 

  7. Papoutsakis, E.;Ramkrishna, D.;Lim, H. C.: The extended Graetz problem with prescribed wall flux. AIChE J. 26 (1980) 779–787

    Article  Google Scholar 

  8. Vick, B.;Özisik, M. N.;Bayazitoglu, Y.: A method of analysis of low Peclet number thermal entry region problems with axial conduction. Letters in Heat and Mass Transfer 7 (1980) 235–248

    Article  Google Scholar 

  9. Vick, B.;Özisik, M. N.: An exact analysis of low Peclet number heat transfer in laminar flow with axial conduction. Letters in Heat and Mass Transfer 8 (1981) 1–10

    Article  Google Scholar 

  10. Hennecke, D. K.: Heat transfer by Hagen-Pouiseuille flow in the thermal development region with axial conduction. Wärme- und Stoffübertragung 1 (1968) 177–184

    Google Scholar 

  11. Bilir, S.: Numerical solution of Graetz problem with axial conduction. Numerical Heat Transfer A21 (1992) 493–500

    Google Scholar 

  12. Nguyen, T. V.: Laminar heat transfer for thermally developing flow in ducts. Int. J. Heat and Mass Transfer 35 (1992) 1733–1741

    Article  Google Scholar 

  13. Papoutsakis, E.;Ramkrishna, D.: Heat transfer in a capillary flow emerging from a reservoir, ASME Trans. J. Heat Transfer 103 (1981) 429–435

    Google Scholar 

  14. Vick, B.;Özisik, M. N.;Ullrich, F.: Effects of axial conduction in laminar tube flow with convective boundaries. J. of the Franklin Institute 316 (1983) 159–173

    Article  Google Scholar 

  15. Sparrow, E. M.;Patankar, S. V.: Relationships among boundary conditions and Nusselt numbers for thermally developed duct flows. ASME Trans. J. Heat Transfer 99 (1977) 483–485

    Google Scholar 

  16. Roetzel, W.: Theorie eines kalorischen Durchflußmeßverfahrens. VDI Forschungsheft 632 (1985) 18–22

    Google Scholar 

  17. Hall, W. B.;Jackson, J. D.;Price, P. H.: Note on forced convection in a pipe having a heat flux which varies exponentially along its length. J. of Mech. Eng. Science 5 (1963) 48–52

    Google Scholar 

  18. Simmons, G. F.: Differential Equations with Applications and Historical Notes. New Delhi: Tata McGraw-Hill, 1974, Chapter 5

    Google Scholar 

  19. Kreyszig, E.: Advanced Engineering Mathematics. New York: Wiley, 1962, Theorem 3, Sect. 10.9

    Google Scholar 

  20. Mori, Y.;Futagami, K.;Tokuda, S.;Nakamura, M.: Forced convective heat transfer in uniformly heated horizontal tubes. Int. J. Heat Mass Transfer 9 (1966) 453–463

    Article  Google Scholar 

  21. Shannon, R. L.;Depew, C. A.: Combined free and forced laminar convection in a horizontal tube with uniform heat flux. ASME J. Heat Transfer 89 (1968) 353–357

    Google Scholar 

  22. Morcos, S. M.;Bergles, A. E.: Experimental investigation of combined forced and free laminar convection in horizontal tubes. ASME J. Heat Transfer 97 (1975) 212–219

    Google Scholar 

  23. Piva, S.;Scarcella, G.;Barozzi, G. S.;Collins, M. W.: Comparison of predictive and experimental data for combined convection in horizontal duct flow. Proceedings of the conference “Computational Methods and Experimental Measurements VI” (C. A. Brebbia and G. M. Carlomagno, editors), London: Elsevier Applied Science, 1993, Vol. 1: Heat and Fluid Flow

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barletta, A., Zanchini, E. On the laminar forced convection with axial conduction in a circular tube with exponential wall heat flux. Heat and Mass Transfer 30, 283–290 (1995). https://doi.org/10.1007/BF01463917

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01463917

Keywords

Navigation