Abstract
We consider the initial value problem for the Zakharov equations
(x∈ℝk,k=2, 3,t ≧0) which model the propagation of Langmuir waves in plasmas. For suitable initial data solutions are shown to exist for a time interval independent of λ, a parameter proportional to the ion acoustic speed. For such data, solutions of (Z) converge as λ → ∞ to a solution of the cubic nonlinear Schrödinger equation (CSE)iE t +ΔE+|E|2 E=0. We consider both weak and strong solutions. For the case of strong solutions the results are analogous to previous results on the incompressible limit of compressible fluids.
Similar content being viewed by others
References
Friedman, A.: Partial differential equations. Huntington, New York: Krieger 1976
Gibbons, J.: Behavior of slow Langmuir solitons. Phys. Lett.67A, 22–24 (1978).
Glassey, R. T.: On the blowing up of solutions to the Cauchy problem for the nonlinear Schrödinger equation. J. Math. Phys.18, 1794–1797 (1977)
Gibbons, J., Thornhill, S. G., Wardrop, M. J., Ter Harr, D.: On the theory of Langmuir solitons. J. Plasma Phys.17, 153–170 (1977)
Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J. Funct. Anal.32, 1–32 (1979)
Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with a large parameter and the incompressible limit of compressible fluids. Commun. Pure Appl. Math.34, 481–524 (1981)
Majda, A.: Compressible fluid flow and systems of conservation laws in several space variables. Berlin, Heidelberg, New York: Springer 1984
Sulem, C., Sulem, P. L.: Quelques résultats de régularité pour les équations de la turbulence de Langmuir. C. R. Acad. Sci. ParisA289, 173–176 (1979)
Sigov, Y. S., Zakharov, V. E.: Strong turbulence and its computer simulation. J. Phys.C7–40, 63–79 (1979)
Temam, R.: Navier stokes equations. Amsterdam: North-Holland 1979
Weinstein, M. I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys.87, 567–576 (1983)
Zakharov, V. E.: Collapse of Langmuir waves. Sov. Phys. JETP35, 908–912 (1972)
Author information
Authors and Affiliations
Additional information
Communicated by L. Nirenberg
Rights and permissions
About this article
Cite this article
Schochet, S.H., Weinstein, M.I. The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence. Commun.Math. Phys. 106, 569–580 (1986). https://doi.org/10.1007/BF01463396
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01463396