Skip to main content
Log in

The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the initial value problem for the Zakharov equations

$$\begin{gathered} \left( Z \right)\frac{1}{{\lambda ^2 }}n_{tt} - \Delta (n + \left| {\rm E} \right|^2 ) = 0n(x,0) = n_0 (x) \hfill \\ n_t (x,0) = n_1 (x) \hfill \\ iE_t + \Delta E - nE = 0E(x,0) = E_0 (x) \hfill \\ \end{gathered} $$

(x∈ℝk,k=2, 3,t ≧0) which model the propagation of Langmuir waves in plasmas. For suitable initial data solutions are shown to exist for a time interval independent of λ, a parameter proportional to the ion acoustic speed. For such data, solutions of (Z) converge as λ → ∞ to a solution of the cubic nonlinear Schrödinger equation (CSE)iE t +ΔE+|E|2 E=0. We consider both weak and strong solutions. For the case of strong solutions the results are analogous to previous results on the incompressible limit of compressible fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedman, A.: Partial differential equations. Huntington, New York: Krieger 1976

    Google Scholar 

  2. Gibbons, J.: Behavior of slow Langmuir solitons. Phys. Lett.67A, 22–24 (1978).

    Google Scholar 

  3. Glassey, R. T.: On the blowing up of solutions to the Cauchy problem for the nonlinear Schrödinger equation. J. Math. Phys.18, 1794–1797 (1977)

    Google Scholar 

  4. Gibbons, J., Thornhill, S. G., Wardrop, M. J., Ter Harr, D.: On the theory of Langmuir solitons. J. Plasma Phys.17, 153–170 (1977)

    Google Scholar 

  5. Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J. Funct. Anal.32, 1–32 (1979)

    Google Scholar 

  6. Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with a large parameter and the incompressible limit of compressible fluids. Commun. Pure Appl. Math.34, 481–524 (1981)

    Google Scholar 

  7. Majda, A.: Compressible fluid flow and systems of conservation laws in several space variables. Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  8. Sulem, C., Sulem, P. L.: Quelques résultats de régularité pour les équations de la turbulence de Langmuir. C. R. Acad. Sci. ParisA289, 173–176 (1979)

    Google Scholar 

  9. Sigov, Y. S., Zakharov, V. E.: Strong turbulence and its computer simulation. J. Phys.C7–40, 63–79 (1979)

    Google Scholar 

  10. Temam, R.: Navier stokes equations. Amsterdam: North-Holland 1979

    Google Scholar 

  11. Weinstein, M. I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys.87, 567–576 (1983)

    Google Scholar 

  12. Zakharov, V. E.: Collapse of Langmuir waves. Sov. Phys. JETP35, 908–912 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L. Nirenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schochet, S.H., Weinstein, M.I. The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence. Commun.Math. Phys. 106, 569–580 (1986). https://doi.org/10.1007/BF01463396

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01463396

Keywords

Navigation