Skip to main content
Log in

Transient response of a piezothermoelastic circular disk under axisymmetric heating

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Transient temperature, displacement, stress and electric field intensities in a finite circular piezothermoelastic disk undergoing axisymmetric surface heating are examined. Exact solutions to the equations of equilibrium and electrostatics are obtained using a potential function approach based upon two piezothermoelastic potential functions, three piezoelastic potential functions and a piezoelectric potential function. The disk under consideration is assumed to exhibit hexagonal material symmetry of class 6 mm. The initial temperature of the disk is zero; thereafter one face is subjected to linear heat transfer from an adjacent medium (Newton's law of cooling), while the temperature of the other face remains constant. Both faces are taken to be free of traction. The cylindrical boundary of the disk is thermally insulated, electrically charge-free, and constrained against radial deformation. Numerical results are obtained for the stress and the electric potential distributions in a cadmium selenide disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tiersten, H. F.: On the nonlinear equations of thermoelectroelasticity. Int. J. Eng. Sci.9, 587–604 (1971).

    Article  Google Scholar 

  2. Chandrasekharaiah, D. S.: A generalized linear thermoelasticity theory for piezoelectric media. Acta Mech.71, 39–49 (1988).

    Article  Google Scholar 

  3. Nowacki, J. P.: Steady-state problems of thermopiezoelectricity. J. Thermal Stresses5, 183–194 (1982).

    Google Scholar 

  4. Irschik, H., Ziegler, F.: Maysel's formula generalized for piezoelectric vibrations: application to thin shells of revolution. AIAA J.34, 2402–2405 (1996).

    Google Scholar 

  5. Dube, G. P., Kapuria, S., Dumir, P. C.: Exact piezothermoelastic solution of simply-supported orthotropic flat panel in cylindrical bending. Int. J. Mech. Sci.38, 1161–1177 (1996).

    Article  Google Scholar 

  6. Jonnalagadda, K. D., Blandford, G. E., Tauchert, T. R.: Piezothermoelastic composite plate analysis using first-order shear deformation theory. Comput. Struct.51, 79–89 (1994).

    Article  Google Scholar 

  7. Lee, H.-J., Saravanos, D. A.: Coupled layerwise analysis of thermopiezoelectric composite beams. AIAA J34, 1231–1237 (1996).

    Google Scholar 

  8. Rao, S. S., Sunar, M.: Analysis of distributed thermopiezoelectric sensors and actuators in advanced intelligent structures. AIAA J.31, 1280–1286 (1993).

    Google Scholar 

  9. Shen, Y. C., Weng, C. I.: The deformation control of a laminated composite plate containing piezoelectric layers under thermal loading. J. Thermal Stresses18, 449–464 (1995).

    Google Scholar 

  10. Tzou, H. S., Ye, R.: Piezothermoelasticity and precision control of piezoelectric systems. J. Vibr. Acoustics116, 489–495 (1994).

    Google Scholar 

  11. Xu, K., Noor, A. K.: Three-dimensional solutions for coupled thermoelectroelastic response of multilayered cylindrical shells. AIAA J.34 802–812 (1996).

    Google Scholar 

  12. Ashida, F., Tauchert, T. R., Noda, N.: A general solution technique for piezothermoelasticity of hexagonal solids of class 6mm in Cartesian coordinates. ZAMM74, 87–95 (1994).

    Google Scholar 

  13. Ashida, F., Noda, N., Tauchert, T. R.: A two-dimensional piezothermoelastic problem in an orthotropic plate exhibiting crystal class 2mm. JSME Int. J.37, 334–340 (1994).

    Google Scholar 

  14. Ashida, F., Tauchert, T. R., Noda, N.: Potential function method for piezothermoelastic problems of solids of crystal class 6mm in cylindrical coordinates. J. Thermal Stresses17, 361–375 (1994).

    Google Scholar 

  15. Ashida, F., Tauchert, T. R., Noda, N.: Response of a piezothermoelastic plate of crystal class 6mm subject to axisymmetric heating. Int. J. Eng. Sci.31, 373–384 (1993).

    Article  Google Scholar 

  16. Ashida, F., Tauchert, T. R.: Temperature determination for a contacting body based on an inverse piezothermoelastic problem. Int. J. Solids Struct. (in press).

  17. Berlincourt, D., Jaffe, H., Shiozawa, L. R.: Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium. Phys. Res.129, 1009–1017 (1963).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashida, F., Tauchert, T.R. Transient response of a piezothermoelastic circular disk under axisymmetric heating. Acta Mechanica 128, 1–14 (1998). https://doi.org/10.1007/BF01463155

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01463155

Keywords

Navigation