Skip to main content
Log in

Continuum modelling of polyelectrolytes in solution

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A phenomenological model for solutions of polyelectrolytes accounting for electromechanical interactions is proposed within the framework of continuum thermodynamics. The modelling involves the conformation of macromolecules in the form of a tensorial “internal variable” and the electric polarization of the solution. The paper aims to demonstrate the possible competition between flow and electricity effects on rigorous phenomenological grounds. Three kinds of dissipative mechanisms are accounted for: viscosity of the solution, electric relaxation and the relaxation of the conformation of macromolecules. Anisotropic effects induced by the applied electric field and flow-induced polarization through changes in conformation are exhibited. These effects are small. By way of application, the problem of the orientation and conformation taken by macromolecules of polyelectrolytes under the combined influence of a simple shear flow and a longitudinal or orthogonal electric bias field is treated in detail and illustrated graphically. Some optical properties are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oosawa F (1971) Polyelectrolytes. Marcel Dekker, New York

    Google Scholar 

  2. Maugin GA, Drouot R (1983) Int J Engng Sci 21:705–724

    Google Scholar 

  3. Maugin GA (1980) Acta Mechanica 35:1–70

    Google Scholar 

  4. Morawetz H (1961) In: Rice SA, Nagasawa M (eds) Polyelectrolyte Solutions. Academic Press, New York

    Google Scholar 

  5. Conway BE, Dobry-Duclaux A (1960) In: Eirich FR (ed) Rheology, Vol 3, p 83. Academic Press, New York

    Google Scholar 

  6. Gordon RJ, Schowalter WR (1972) Trans Soc Rheology 16:79–97

    Google Scholar 

  7. Moan M (1976) Contribution à l'interprétation du comportement des solutions de Polyélectrolytes linéaires dans un écoulement viscométrique. Thesis, Université de Bretagne Occidentale, Brest, France, December

    Google Scholar 

  8. Auvray L (1981) Effets de confinement et de paroi sur une solution de bâtonnets rigides — Polyélectrolytes en milieux poreux. Thesis, Collège de France, Paris, France, January

    Google Scholar 

  9. Lhuillier D, Ouibrahim A (1980) J Mécanique 19:1–17

    Google Scholar 

  10. Maugin GA, Eringen AC (1977) J Mécanique 16:101–147

    Google Scholar 

  11. Seanor DA (ed) (1982) Electrical Properties of Polymers, Academic Press, New York

    Google Scholar 

  12. Doi M (1980) Ferroelectrics 30:247–254

    Google Scholar 

  13. Doi M, Edwards SF (1978) J Chemical Soc Faraday Trans II 74:918–932

    Google Scholar 

  14. de Gennes PG (1974) The Physics of Liquid Crystals, Oxford University Press, London

    Google Scholar 

  15. Germain P, Nguyen QS, Suquet P (1983) Trans ASME, J Appl Mech 50:1010–1020

    Google Scholar 

  16. Lumley JL (1983) Trans ASME, J Appl Mech 50:1097–1103

    Google Scholar 

  17. Ouibrahim A (1981) Analyse phénoménologique et approche rhéologique de solutions de polymères en écoulement viscométrique et élongationnel. Thesis, Université Pierre-et-Marie Curie, Paris, France, January

    Google Scholar 

  18. Lhuillier D (1979) Phys Fluids 22:2033–2035

    Google Scholar 

  19. Lhuillier D (1981) J Non-Newtonian Fluid Mech 9:329–337

    Google Scholar 

  20. Harrington RE (1966) Flow Birefringence. In: Encyclopedia of Polymer Science and Technology, Vol 13. J Wiley, New York, pp 100–179

    Google Scholar 

  21. Wissler A (1940) Thesis, Bern, Switzerland (quoted in Ref. 20)

  22. Wong GKL, Shen YR (1973) Phys Rev Lett 30:895–897

    Google Scholar 

  23. Prost J, Lalanne JH (1973) Physical Review A8:2090–2093

    Google Scholar 

  24. de Gennes PG (1971) Mol Cryst Liq Crystals 12:193–214

    Google Scholar 

  25. Maugin GA (1979) Int J Engng Sci 17:1073–1091

    Google Scholar 

  26. Frankel NA, Acrivos A (1970) J Fluid Mech 44:65–78

    Google Scholar 

  27. Batchelor GK (1970) J Fluid Mech 41:545–570

    Google Scholar 

  28. Jeffery GB (1922) Proc Roy Soc London A102:161–179

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drouot, R., Maugin, G.A. Continuum modelling of polyelectrolytes in solution. Rheol Acta 24, 474–487 (1985). https://doi.org/10.1007/BF01462494

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01462494

Key words

Navigation