Numerische Mathematik

, Volume 23, Issue 2, pp 181–192 | Cite as

On the order of convergence of certain Quasi-Newton-methods

  • Günther Schuller


This paper deals with the problem of finding the order of convergence of certain Quasi-Newton-methods for function minimizations. It is shown that these methods have the same order of convergence τ>1, τn+1−τ n −1=0, as (n+1)-point secant methods, if comparable assumptions are made.


Mathematical Method Function Minimization Secant Method Comparable Assumption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adachi, N.: On variable metric algorithms. JOTA7, 391–410 (1971)Google Scholar
  2. 2.
    Broyden, C. G.: Quasi-Newton methods and their application to function minimization. Maths. Comp.21, 368–381 (1967)Google Scholar
  3. 3.
    Broyden, C. G.: The convergence of a class of double-rank minimization algorithms. Part 1 and Part 2. J. Inst. Math. Applic.6, 76-90, 222–231 (1970)Google Scholar
  4. 4.
    Broyden, C. G., Dennis, J. E., Jr. Moré, J. J.: On the local and superlinear convergence of Quasi-Newton methods. J. Inst. Math. Applic.12, 223–245 (1973)Google Scholar
  5. 5.
    Dixon, L. C. W.: Quasi-Newton algorithms generate identical points. Math. Progr.2, 383–387 (1972)Google Scholar
  6. 6.
    Huang, H. Y.: Unified approach to quadratically convergent algorithms for function minimization. JOTA5, 405–423 (1970)Google Scholar
  7. 7.
    Ortega, J. M., Rheinboldt, W. C.: Iterative solution of nonlinear equations in several variables. New York-London: Academic Press 1970Google Scholar
  8. 8.
    Powell, M. J. D.: On the convergence of the variable metric algorithm. J. Inst. Math. Applic.7, 21–36 (1971)Google Scholar
  9. 9.
    Powell, M. J. D.: Some properties of the variable metric algorithm. In F. A. Lootsma Ed.: Numerical methods for non-linear optimization. London: Academic Press 1972Google Scholar
  10. 10.
    Rheinboldt, W. C., Vandergraft, J. S.: On the local convergence of update methods. Technical Report TR-255, Computer Science Center, University of Maryland, August 1973Google Scholar
  11. 11.
    Schuller, G., Stoer, J.: Über die Konvergenzordnung gewisser Rang-2-Verfahren zur Minimierung von Funktionen. To appear in: International Series of Numerical Mathematics. Basel: Birkhäuser 1974Google Scholar
  12. 12.
    Stoer, J.: On the convergence behaviour of some minimization algorithms. To appear in: Proceedings IFIP Congress 1974. Amsterdam: North HollandGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Günther Schuller
    • 1
  1. 1.Rechenzentrum der Universität WürzburgWürzburgGermany

Personalised recommendations