Skip to main content

On Cramér's theorem for general Euler products with functional equation

This is a preview of subscription content, access via your institution.

References

  1. Bochner, S.: On Riemann's functional equation with multiple gamma factors. Ann. Math.67, 29–41 (1958)

    Google Scholar 

  2. Bump, D.: The Rankin-Selberg method: a survey. In: Number theory, trace formula, and discrete groups, pp. 49–109. Aubert, K.E. et al. (eds.) London: Academic Press 1989

    Google Scholar 

  3. Conrey, J.B., Ghosh, A.: On the Selberg class of Dirichlet series: small weights. Preprint (1991)

  4. Cramér, H.: Studien über die Nullstellen der Riemannschen Zetafunktion. Math. Z.4, 104–130 (1919)

    Google Scholar 

  5. Deninger, C.: LocalL-factors of motives and regularized products. Invent. Math.107, 135–150 (1992)

    Google Scholar 

  6. D'Hoker, E., Phong, D.: On determinants of Laplacians on Riemann surfaces. Commun. Math. Phys.105, 537–545 (1986)

    Google Scholar 

  7. Efrat, I.: Determinants of Laplacians on surfaces of finite volume. Commun. Math. Phys.119, 443–451 (1988)

    Google Scholar 

  8. Efrat, I.: Erratum: Determinants of Laplacians on surfaces of finite volume. Commun. Math. Phys.138, 607 (1991)

    Google Scholar 

  9. Gangolli, R.: Zeta functions of Selberg's type for compact space forms of symmetric space of rank one. III. J. Math.21, 1–42 (1977)

    Google Scholar 

  10. Gangolli, R., Warner, G.: Zeta functions of Selberg's type for some non-compact quotients of symmetric spaces of rank one. Nagoya Math. J.78, 1–44 (1980)

    Google Scholar 

  11. Gelbart, S., Shahidi, F.: Analytic properties of automorphicL-functions. San Diego: Academic Press 1988

    Google Scholar 

  12. Hejhal, D.A.: The Selberg trace formula forPSL(2,R), vol. 1 (Lect. Notes in Math., vol. 548. Berlin, Heidelberg, New York: Springer 1976

    Google Scholar 

  13. Hejhal, D.A.: The Selberg trace formula forPSL (2,R), vol. 2. (Lect. Notes Math., vol. 1001. Berlin Heidelberg, New York: 1983

  14. Hermite, C.: Sur quelques points de la théorie des fonctions. J. Crelle91, 48–75 (1881) (Collected papers, vol. IV, pp. 48–75) Paris: Gauthier-Villiars 1917

    Google Scholar 

  15. Huxley, M.N.: Scattering matrices for congruence subgroups. In: Modular forms, pp. 157–196. Rankin, R.A. (ed.) New York: Wiley 1984

    Google Scholar 

  16. Illies, G.: Regularisierte Produkte und HeckescheL-Reihen. Preprint (1992)

  17. Ingham, A.E.: The distribution of prime numbers. Cambridge: Cambridge University Press 1932

    Google Scholar 

  18. Jorgenson, J., Lang, S.: Complex analytic properties of regularized products. Yale University Preprin (1992), to appear Lect. Notes in Math.

  19. Jorgenson, J., Lang, S.: A Parseval formula for functions with an asymptotic expansion at the origin. Yale University Preprint (1992), to appear Lect. Notes in Math.

  20. Jorgenson, J., Lang, S.: Explicit formulas and regularized products. Yale University Preprint (1993)

  21. Kaczorowski, J.: Thek-functions in multiplicative number theory. I. Acta Arith.56, 195–211 (1990)

    Google Scholar 

  22. Koyama, S.: Determinant expression of Selberg zeta functions. I. Trans. Am. Math. Soc.324, 149–168 (1991)

    Google Scholar 

  23. Koyama, S.: Determinant expression of Selberg zeta functions. III. Proc. Am. Math. Soc.113, 303–311 (1991)

    Google Scholar 

  24. Koyama, S.: Determinant expression of Selberg zeta functions. II. Trans. Am. Math. Soc.329, 755–772 (1992)

    Google Scholar 

  25. Kubota, T.: Elementary theory of Eisenstein series. New York: Wiley 1973

    Google Scholar 

  26. Kurokawa, N.: Parabolic components of zeta functions. Proc. Japan Acad. Ser. A64, 21–24 (1988)

    Google Scholar 

  27. Kurokawa, N.: Multiple sine functions and Selberg zeta functions. Proc. Japan Acad. Ser.A 67, 61–64 (1991)

    Google Scholar 

  28. Kurokawa, N.: Gamma factors and Plancherel measures. Proc. Japan Acad. Ser. A68, 256–260 (1992)

    Google Scholar 

  29. Lang, S.: Algebraic number theory. Menlo Park, CA.: Addison-Wesley 1970, reprinted as Grad. Texts Math., vol. 110. Berlin Heidelberg New York: Springer 1986

    Google Scholar 

  30. Lang, S.: Complex analysis. (Grad. Texts Math., vol 103. Berlin Heidelberg New York: Springer 1985, 3rd. edition 1993

    Google Scholar 

  31. Millson, J.: Closed geodesics and the η-invariant. Ann. Math.108, 1–39 (1978)

    Google Scholar 

  32. Moscovici, H., Stanton, R.J.: Eta invariants of Dirac operators on locally symmetric manifolds. Invent. Math.95, 629–666 (1989)

    Google Scholar 

  33. Sarnak, P.: Determinants of Laplacians. Commun. Math. Phys.110, 113–120 (1987)

    Google Scholar 

  34. Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. B20, 47–87 (1956) (Collected papers volume I, pp. 423–463. Berlin Heidelberg New York: Springer 1989

    Google Scholar 

  35. Selberg, A.: Old and new conjectures and results about a class of Dirichlet series. Collected papers volume II, pp. 47–63. Berlin Heidelberg New York: Springer 1991

    Google Scholar 

  36. Serre, J.-P.: Facteurs locaux des fonctions zeta des variétés algébriques. Sem. Delange-Poitou-Pisot 1969–70, Exposé 19

  37. Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Princeton: Princeton University Press 1971

    Google Scholar 

  38. Vardi, I.: Determinants of Laplacians and multiple gamma functions. SISM J. Math. Anal.19, 493–507 (1988)

    Google Scholar 

  39. Vignéras, M.-F.: L'équation fonctionelle de la fonction zéta de Selberg du groupoe modulaireSL(2,Z). Astérisque61, 235–249 (1979)

    Google Scholar 

  40. Williams, F.L.: A factorization of the Selberg zeta function attached to a rank 1 space form. Manuscr. Math.77, 17–39 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Actually the MSC does not, but should, include an item for regularized products. J.J. and S.L.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jorgenson, J., Lang, S. On Cramér's theorem for general Euler products with functional equation. Math. Ann. 297, 383–416 (1993). https://doi.org/10.1007/BF01459509

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01459509

Mathematics Subject Classification (1991)

  • 11M35
  • 11M41
  • 11M99
  • 30B50
  • 30D15