Numerische Mathematik

, Volume 40, Issue 1, pp 39–46 | Cite as

The ɛ-algorithm and multivariate Padé-approximants

  • Annie A. M. Cuyt


In the univariate case the ɛ-algorithm of Wynn is closely related to the Padé-table in the following sense: if we apply the ɛ-algorithm to the partial sums of the power series\(f(x) = \sum\limits_{i = 0}^\infty {c_i x^i } \) then ε 2m lm is the (l, m) Padé-approximant tof(x) wherel is the degree of the numerator andm is the degree of the denominator [1 pp. 66–68].

Several generalizations of the ɛ-algorithm exist but without any connection with a theory of Padé-approximants.

Also several definitions of the Padé-approximant to a multivariate function exist, but up till now without any connection with the ɛ-algorithm.

In this paper, we see that the multivariate Padé-approximants introduced in [3], satisfy the same property as the univariate Padé-approximants: if we apply the ɛ-algorithm to the partial sums of the power series
$$f\left( {x_1 ,...,x_n } \right) = \sum\limits_{i_1 + ... + i_n = 0}^\infty {c_{i_1 ...i_n } x_1^{i_1 } ...x_n^{i_n } } $$
then ε 2m (lm) is the (l, m) multivariate Padé-approximant tof(x1, ...,x n ).

Subject classification

AMS(MOS): 65D15 CR: 5.13 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brezinski, C.: Algoritmes d'accélération de la convergence. Editions Technip, Paris 1978Google Scholar
  2. 2.
    Brezinski, C.: Accélération de la convergence en analyse numérique. LNM 584, Berlin: Springer 1977Google Scholar
  3. 3.
    Cuyt, A.: Abstract Padé Approximants in operator theory, pp-61–87. LNM 765, Berlin: Springer 1979Google Scholar
  4. 4.
    Perron, O.: Die Lehre von den Kettenbrüchen II. Stuttgart: Teubner 1977Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Annie A. M. Cuyt
    • 1
  1. 1.Department of MathematicsUniversity of AntwerpWilrijkBelgium

Personalised recommendations